MoveVR: Enabling Multiform Force Feedback in Virtual Reality using Household Cleaning Robot

Yuntao Wang, Zichao (Tyson) Chen, Hanchuan Li, Zhengyi Cao, Huiyi Luo, Tengxiang Zhang, Ke Ou, John Raiti, Chun Yu, Shwetak Patel, Yuanchun Shi


Haptic feedback can significantly enhance the realism and immersiveness of virtual reality (VR) systems. In this paper, we propose MoveVR, a technique that enables realistic, multiform force feedback in VR leveraging commonplace cleaning robots. MoveVR can generate tension, resistance, impact and material rigidity force feedback with multiple levels of force intensity and directions. This is achieved by changing the robot's moving speed, rotation, position as well as the carried proxies. We demonstrate the feasibility and effectiveness of MoveVR through interactive VR gaming. In our quantitative and qualitative evaluation studies, participants found that MoveVR provides more realistic and enjoyable user experience when compared to commercially available haptic solutions such as vibrotactile haptic systems.