HydroSense: Infrastructure-mediated Single-point Sensing of Whole-home Water Activity

Jon Froehlich, Eric Larson, Tim Campbell, Conor Haggerty, James Fogarty, Shwetak Patel
PDF Video

Abstract

Recent work has examined infrastructure-mediated sensing as a practical, low-cost, and unobtrusive approach to sensing human activity in the physical world. This approach is based on the idea that human activities (e.g., running a dishwasher, turning on a reading light, or walking through a doorway) can be sensed by their manifestations in an environment's existing infrastructures (e.g., a home's water, electrical, and HVAC infrastructures). This paper presents HydroSense, a low-cost and easily-installed single-point sensor of pressure within a home's water infrastructure. HydroSense supports both identification of activity at individual water fixtures within a home (e.g., a particular toilet, a kitchen sink, a particular shower) as well as estimation of the amount of water being used at each fixture. We evaluate our approach using data collected in ten homes. Our algorithms successfully identify fixture events with 97.9% aggregate accuracy and can estimate water usage with error rates that are comparable to empirical studies of traditional utility-supplied water meters. Our results both validate our approach and provide a basis for future improvements.