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ABSTRACT 
Recent work has examined infrastructure-mediated sensing 
as a practical, low-cost, and unobtrusive approach to 
sensing human activity in the physical world. This approach 
is based on the idea that human activities (e.g., running a 
dishwasher, turning on a reading light, or walking through a 
doorway) can be sensed by their manifestations in an 
environment’s existing infrastructures (e.g., a home’s water, 
electrical, and HVAC infrastructures). This paper presents 
HydroSense, a low-cost and easily-installed single-point 
sensor of pressure within a home’s water infrastructure. 
HydroSense supports both identification of activity at 
individual water fixtures within a home (e.g., a particular 
toilet, a kitchen sink, a particular shower) as well as 
estimation of the amount of water being used at each 
fixture. We evaluate our approach using data collected in 
ten homes. Our algorithms successfully identify fixture 
events with  97.9% aggregate accuracy and can estimate 
water usage with error rates that are comparable to 
empirical studies of traditional utility-supplied water 
meters. Our results both validate our approach and provide 
a basis for future improvements. 
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INTRODUCTION AND MOTIVATION 
Effective methods for sensing and modeling human activity 
in the physical world are a cornerstone of ubiquitous 
computing research and practice. Many complementary 
approaches have been developed, including recent interest 

in infrastructure-mediated sensing [7, 14, 15, 16, 17, 20]. 
This approach is based on the idea that human activities 
(e.g., running a dishwasher, turning on a reading light, or 
walking through a doorway) can be sensed via their 
manifestations in an environment’s existing infrastructures 
(a home’s water [7], electrical [15, 16, 17, 20], and HVAC 
[14] infrastructures). Because of its practical, low-cost, and 
unobtrusive nature, infrastructure-mediated sensing offers 
significant promise as a general method. 

This work focuses on infrastructure-mediated sensing of 
home water activity. Water is essential to many home 
activities (e.g., washing, cleaning, cooking, drinking, 
gardening) which are in turn central to important potential 
ubiquitous computing applications (e.g., helping elders live 
more independently, helping people monitor their own 
water usage to reduce waste). Previous work monitoring 
home water usage [6, 7, 9] required multiple sensing points, 
exposed piping, could not infer both fixture and flow, and 
received limited or no validation in actual homes. 

This paper presents HydroSense, a low-cost, single-point 
solution for activity sensing mediated by a home’s existing 
water infrastructure. HydroSense is based on continuous 
analysis of pressure within a home’s water infrastructure. 
Specifically, we identify individual water fixtures (e.g., a 
particular toilet, a kitchen sink, a particular shower) within 
a home according to the unique pressure waves that 
propagate to the sensor when valves are opened or closed. 
We also estimate the amount of water being used at a 
fixture based on the magnitude of the resulting pressure 
drop within the water infrastructure. Our work represents a 
significant advance over prior research in several regards: 

First, HydroSense can be easily installed at any accessible 
location within a home’s existing water infrastructure. 
Typical installations will be at an exterior hose bib, utility 
sink spigot, or water heater drain valve. If unavailable or 
not easily accessed (e.g., in an apartment unit), HydroSense 
can also be installed at the water connection point for a 
dishwasher, clothes washer, or toilet. All of these are simple 
screw-on installation points, with no need for a plumber. 

Second, HydroSense’s analysis of pressure provides the 
unique capability of sensing both the individual fixture at 
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which water is currently being used as well as an estimate 
of the amount of water being used. HydroSense is the first 
practical approach to enabling applications that require 
both. Our sensing of pressure is also less susceptible to 
ambient noise, as has been encountered in previous 
microphone-based infrastructure-mediated systems. 

Third, we evaluate HydroSense in ten very diverse homes, 
thus providing a more robust evaluation than any previous 
work on water-related home activity sensing. We 
demonstrate reliable segmentation of valve pressure events 
from the surrounding sensor stream, show reliable 
classification of valve open and valve close events, show 
the successful identification of individual fixtures with 
97.9% aggregate accuracy, and show that an appropriately 
located and calibrated system can estimate water usage with 
error rates comparable to empirical studies of traditional 
utility-supplied water meters. In addition, we present initial 
forward-looking analyses of compound event detection, a 
comparison of sensing at different locations, and a first look 
at the temporal stability of pressure event signatures. Our 
evaluation both validates the feasibility of our approach and 
provides a basis for future analyses and improvements. 

Figure 1 illustrates a typical plumbing arrangement in a 
two-bathroom home (discussed in greater detail in a later 
section). Figure 2 shows an actual annotated signal captured 
by our sensor. The signal is a kitchen faucet fixture being 
turned on, captured by our sensor at an exterior water bib. 
The remainder of this paper first discusses the theory 
behind our approach, presents our sensor implementation, 
and summarizes our in-home data collections. We then 
present our analyses of individual fixture identification and 

water flow estimation, follow by a discussion of some 
important directions for future work. 

RELATED WORK 
Prior work has demonstrated at least three approaches to the 
fundamental challenge of sensing human activity in the 
physical world: mobile and wearable sensing, distributed 
direct environmental sensing, and infrastructure-mediated 
environmental sensing. Promising mobile and wearable 
activity sensing methods include accelerometer-based 
activity recognition [2, 10] and the detection of interaction 
with tagged objects via a wearable RFID reader [18]. There 
are many compelling applications of mobile and wearable 
methods, but they share a common need for a person to be 
willing to wear or carry the necessary device.  

Environmental sensing systems take a complementary 
perspective, instrumenting an environment to detect activity 
within it. In the home, distributed direct sensing can be 

 
Figure 1: An illustrative schematic of a basic plumbing layout in a two-bathroom home. HydroSense can be easily installed at 
any accessible location in a home’s water infrastructure, with typical installations at an exterior hose bib (shown above), a 
utility sink spigot, or a water heater drain valve. By continuously sensing water pressure at this single installation point, 
HydroSense can both identify individual fixtures at which water is being used as well as estimate the amount of water being used. 

 
Figure 2: An actual event generated when a kitchen faucet 
is turned on, detected by our sensor at an exterior water 
bib. Our fixture identification is based in segmenting the 
event (indicated by the highlight) and then classifying it 
according to its shape (see also Figure 3 and Figure 6).  
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based on computer vision [4], microphones within the 
living environment [5], many simple sensors throughout the 
home (e.g., reed switches on cabinet doors, accelerometer-
based object manipulation sensors, infrared motion and 
break-beam sensors) [11, 12, 21], or a smaller number of 
targeted direct sensors (e.g., strain sensors under 
floorboards at strategic locations) [19]. Direct sensing 
provides valuable insight into home activities, but comes 
with practical costs. Installation and maintenance can be 
cost-prohibitive, direct sensing can create privacy concerns 
and a feeling of stigmatization (especially with cameras or 
microphones), and a littering of sensors throughout a home 
can be problematic with children and pets [3, 8].  

Recent work has therefore examined whole-home activity 
sensing using just a handful of inexpensive sensors at 
strategic locations in a home’s existing infrastructure (e.g., 
a home’s water [7], electrical [15, 16, 17, 20], and HVAC 
[14] infrastructures). The central idea in infrastructure-
mediated sensing is to recognize human activities, such as 
running a dishwasher, turning on a reading light, or walking 
through a doorway, according to their manifestations in 
these existing home infrastructures. 

Infrastructure-mediated sensing helps to address many 
practical obstacles to everyday deployment of home activity 
sensing, but is inherently limited by what information can 
be practically and reliably extracted from a home’s 
infrastructure. The limitations of existing approaches are 
especially salient for water. Fogarty et al. used microphones 
pressed against the exterior of a single home’s major water 
pipes (cold water inlet, hot water inlet, waste water exit) to 
demonstrate recognition based on patterns of water use 
(e.g., the series of fill cycles associated with a dishwasher) 
[7]. However, Fogarty et al. found they could not reliably 
differentiate among multiple instances of similar fixtures 
(e.g., multiple sinks or toilets within a home), could not 
reliably identify concurrent activities (e.g., a toilet flush 
while a person is showering), and did not attempt to 
estimate the volume of water being used. They also 
reported difficulties with ambient noise and audio-based 
sensors (e.g., an air conditioning unit in close proximity to a 
sensor placed on a home’s hot water heater). By addressing 
these shortcomings, HydroSense significantly advances the 
state-of-the-art for water-mediated home activity sensing. 

With regards to water flow estimation, we are not aware of 
any prior work using a single sensor to estimate water flow 
rate to individual fixtures throughout a home. Industrial 
applications (e.g., irrigation systems, pharmaceutical 
manufacturing) have motivated sensors for high-granularity 
flow rate monitoring, but these existing approaches are 
either prohibitively expensive for residential use (2000 
USD to 8000 USD for a single ultrasonic or laser Doppler 
velocimetry sensor) or require the professional installation 
of inline flow sensors (a plumber cutting into existing pipes 
to install an inline flow sensor for each fixture of interest). 
Evans et al. show in a laboratory environment that 
accelerometers mounted on the exterior of water pipes have 

a strong deterministic relationship to water flow rate [6], 
but this is highly sensitive to pipe diameter, material, and 
configuration. Kim et al. propose using a home’s existing 
aggregate water flow meter together with a network of 
accelerometers on pipes to infer flow rates throughout a 
home [9]. All of the above approaches require placement of 
multiple sensors along water pipe pathways that are 
uniquely associated with each fixture of interest (i.e., they 
are distributed direct sensing methods). Furthermore, both 
Evans et al. and Kim et al. require exposed piping and 
neither has been validated in actual home environments. 
BACKGROUND AND THEORY OF OPERATION 
In this section, we provide background on residential water 
supply systems and in-home plumbing. We also introduce 
the basic theory of operation, motivating our approach. 

Households obtain water from one of two sources: public 
water supply or a private well. Public water is distributed 
by local utilities, relying on gravity and pumping stations to 
push water through major distribution pipes. Residences are 
connected to a water main by a smaller service line, where 
the water meter is typically found. Homes with private 
wells use a pump to draw the water out of the ground and 
into a small tank within the home, where it is stored under 
pressure. Private wells are typically unmetered. 

Figure 1 depicts a typical in-home plumbing system. Cold 
water enters through the service line, typically at 50-100 
pounds per square inch (psi)* depending on such factors as 
the elevation and proximity to a reservoir or pumping 
station. Many homes have a pressure regulator that protects 
the home from transients (or pressure spikes) from the main 
and also reduces the incoming water pressure to a level safe 
for household fixtures.  

After the regulator, there are two basic layouts found in 
typical residential piping, series plumbed and branched. 
Almost all multi-fixture homes have a combination. The 
cold water supply branches to the individual water fixtures 
(e.g., toilets/sinks/showers) and into the water heater. A 
traditional water heater heats water in an insulated tank 
using electric coils or gas. When hot water is used, the 
pressure from the cold water supply line pushes hot water 
out of the tank and refills it with cold water. Every hot 
water tank has a pressure relief valve and a drain valve. 
Many homes also have a thermal expansion tank connected 
to the water heater, providing space to store excess water as 
it expands during heating. Some homes instead use tankless 
heaters, which provide hot water on demand by circulating 
it through burners or electric coils. Both approaches 
connect cold and hot regions of a home’s water system, and 
the pressure fluctuations leveraged in our approach are 
propagated through both types of water heaters. 

Identifying Water Fixtures 
The plumbing system forms a closed loop pressure system, 
with water held at a stable pressure throughout the piping 

 

* 1 psi ≈ 69 mbar. 
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when no water is flowing. Homes with a pressure regulator 
have stable pressure unless the supply pressure drops below 
the regulator’s set point. Homes without a regulator may 
experience occasional minor changes in water pressure 
depending on neighborhood water demand.  

The instant a valve is opened or closed (be it a bathroom 
faucet or a mechanical valve in a dishwasher), a pressure 
change occurs and a pressure wave is generated in the 
plumbing system (Figure 2 and Figure 3). Transient 
pressure wave phenomenon results from the rapid change of 
water velocity in a pipeline (similar to electrical transients 
over power lines). This is often referred to as a surge or 
water hammer and can create a loud hammering noise as 
the shockwave travels through pipes. The magnitude of the 
surge is independent of and much greater than the operating 
pressure. The transient can have a positive or negative rate 
of change depending on whether a valve is being opened or 
closed. Appliances such as dishwashers or clothes washers 
control their valves mechanically and thus often create the 
most pronounced water hammer. An abrupt change in flow 
can create dangerously high transients that exceed safe 
operating limits for residential pipes. A thermal expansion 
tank and water hammer arresters offer partial dampening of 
these transients. Most valves manifest as a water hammer 
impulse that is harmless but can be detected by a pressure 
sensor installed on the plumbing system. Water hammer 
typically lasts several seconds, as the pressure wave 
oscillates back and forth through the pipes. We can detect 
this water hammer effect anywhere along the plumbing 
infrastructure (even with dampeners installed), thus 
enabling single-point sensing. 

The unique transient or water hammer signature that we 
sense for a particular fixture depends on the valve type and 
its location in the home pipe network. This latter point 
provides great discriminative power, allowing us to 
distinguish between two fixtures of the exact same model 
(e.g., two of the same toilets in the house) and even 
between two valves in the same fixture (e.g., the hot and 
cold water valves in a sink fixture) because their pressure 
wave impulses traverse different paths through the pipe 
infrastructure before reaching our sensor. Note that the 
magnitude of the pressure drop and resulting shockwave is 
dependent on the relative location of our sensor to the 
source of the event and the speed that the valve is opened or 
closed, but the shape of the signature does not change.  

Estimating Flow 
Changes in pressure and the rate of transient onset allow us 
to accurately detect valve open and valve close events as 
well as to estimate flow. This is analogous to an electrical 
circuit, where knowing the resistance (i.e., pipe restrictions) 
and the change in voltage (i.e., pressure) allows one to 
determine the current (i.e., flow).  

Flow rate is related to pressure change via Poiseuille’s Law, 
which states that the volumetric flow rate of fluid in a pipe 
Q is dependent on the radius of the pipe r, the length of the 
pipe L, the viscosity of the fluid μ and the pressure drop ΔP:  

ܳ ൌ 
 ସݎ ߨ ܲ∆
ܮ ߤ 8  

This can be simplified by the fluid resistance formulation, 
which states that the resistance of flow is proportional to the 
drop in pressure divided by the volumetric flow rate. 

ܴ ൌ  
∆ܲ
ܳ
ؠ   

ܮ ߤ 8
 ସݎ ߨ

 

Thus, we can use fluid resistance to abstract some of the 
variable complexity from Poiseuille’s law, resulting in: 

ܳ ൌ 
∆ܲ 
ܴ

 

HydroSense measures the change in pressure ΔP. In order 
to compute Q, we must estimate the remaining unknown Rf . 
Rf is bounded by two factors: (1) water viscosity, which can 
easily be calculated according to temperature and (2) the 
radius of residential pipes, which are either 1/4” or 3/8” in 
diameter. This leaves L, the length of the pipe, as the main 
unknown. L will change depending on the water fixture 
being used, as each path from intake to fixture is different. 

These equations are not comprehensive. They do not 
account for the smoothness of the inner pipe surface, the 
number of bends, valves, or constrictions in pipes, nor pipe 
orientation (e.g., the forces of gravity and changes in 
barometric pressure). However, we have found these effects 
can be treated as negligible for home pipe networks. We 
simply estimate ܴ for each home by sampling flow rate at 
strategic locations (varying distances from the supply inlet). 

PROTOTYPE SENSOR DESIGN 
Our prototype HydroSense sensor implementation consists 
of a customized stainless steel pressure sensor, an analog-
to-digital converter (ADC) and microcontroller, and a 
Bluetooth wireless radio (see Figure 4). We built two 
different HydroSense prototypes: one with a pressure range 
of 0-50 psi and the other 0-100 psi. The higher dynamic 
range is useful for homes with high supply pressure or 
without a pressure regulator. The pressure sensor is a P1600 
series manufactured by Pace Scientific™. It comes standard 
with a built-in ¼” NPT male connector, which we fitted 
with a ¾” brass adaptor and Teflon tape. This allows us to 
easily install our sensor at any ordinary water spigot or 
outlet. The sensor has an operating temperature of -40 to 

 
Figure 3: An actual kitchen faucet valve close event, as 
detected by our sensor at an exterior water bib.  
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257°F and a pressure response time of less than 0.5 
milliseconds. The theoretical maximum sampling rate is 
therefore 2 kHz, but we found 1 kHz more than sufficient.  

The pressure sensor’s output is ratiometric to the 5 VDC 
supply voltage (the output voltage is a ratio of the supply). 
The sensor is connected to a 16-bit Texas Instruments 
ADS8344 ADC and AVR microcontroller, with a resolution 
of approximately 0.001 psi for the 50 psi sensor and 0.002 
psi for the 100 psi sensor. The microcontroller is connected 
to a Class 1 Bluetooth radio implementing the serial port 
profile. It can reliably sample and stream pressure data over 
the Bluetooth channel. We use a 5V low-drop power 
regulator and the entire unit operates on a single 9V battery.  

The pressure sensor has a mechanical shock rating of over 
100g, making it insensitive to pipe vibration occasionally 
caused by some water hammer events. Although the 
pressure sensor comes calibrated and tested for linearity 
from the factory, we confirmed the output of our entire 
sensor system using known pressure loads. Ten samples 
were taken with our sensor connected to a pressure-
regulated water compressor. All measurements were well 
within pressure sensor's tolerance of 0.25% at 25° C. The 
entire unit is weatherproof and can be installed in damp 
locations. Our current implementation does not offer a pass-
through solution (i.e., allowing the installation fixture to be 
used as normal), but this modification is trivial.  

IN-HOME DATA COLLECTION 
In order to validate our general approach, our sensor 
implementation, and our algorithms, we collected labeled 
data in ten homes, in four cities, of varying, style, age, and 
diversity of plumbing systems (see Figure 5).  

For each home, we first measured the baseline static water 
pressure and then installed the appropriate HydroSense unit 
(0-50 or 0-100 psi) on an available water hose bib, utility 
sink faucet, or water heater drain valve. Each collection 
session was conducted by a pair of researchers: one would 
record the sensed pressure signatures to a laptop while the 
other activated the home’s water fixtures. The pressure 
signatures were recorded using a graphical logging tool, 
which also provided real-time feedback of the pressure data 

via a scrolling time-series line graph. We conducted five 
trials per valve on each fixture (e.g., five trials for hot water 
and five trials for cold water). For each trial, a valve was 
opened completely for at least five seconds and then closed. 
For the toilet trials, the toilet flush and full fill cycle were 
logged. Note that for the faucet experiments, we did not 
collect data on partially opened valves nor the speed with 
which they were opened. We return to this issue in the 
discussion section. 

For four of the ten houses (H1, H4, H5, and H7), we also 
collected flow rate information for the faucet (kitchen and 
bathroom) and shower fixtures. In addition to logging 
sensed pressure, we measured the amount of time it took to 
fill a calibrated bucket to one gallon (a method preferred by 
water utilities for accurately measuring flow). This was 
repeated for five trials for each valve. 

This in-home data collection yielded a total of 706 fixture 
trials and 155 flow rate trials across 84 fixtures. 

ID / 
Water 
Supply  

Style / 
Built / 

Remodel 

Size / 
Floors / 
Fixtures 

Exp. Tank/ 
Regulator / 

Recirc. 
Pump 

Water  
Heater / 

Plumbing/
Static PSI 

Sensor 
Install 
Point 

H1 
Public 
Utility 

Single-
Family 
2002 

3200 sqft 
2 flr + bas 
12 fixture 

Yes 
Yes 
No 

Tank 
PVC 

46 PSI 

Hose 
Bib 

H2 
Public 
Utility 

Multi-
Family 
1909/96 

2160 sqft 
2 flr + bas 
5 fixtures 

No 
No 
No 

Tankless 
Copper 
46 PSI 

Hose 
Bib 

H3 
Public 
Utility 

Single-
Family 
2003 

4000 sqft 
2 flr + bas 
6 fixtures 

Yes 
Yes 
No 

Tank 
Copper 
41 PSI 

Hose 
Bib 

H4 
Public 
Utility 

Single-
Family 
1921 

1630 sqft 
1 flr + bas 
4 fixtures 

No 
No 
No 

Tank 
Galvan. 
43 PSI 

Hose 
Bib 

H5 
Public 
Utility 

Single-
Family 
1913 

2000 sqft 
2 flr + bas 
5 fixtures 

No 
No 
No 

Tank 
Copper 
55 PSI 

Hose 
Bib 

H6 
Public 
Utility 

Single-
Family 
1974/85 

3100 sqft 
2 flr 

8 fixtures 

Yes 
Yes 
Yes 

Tank 
Galvan. 
46 PSI 

Hose 
Bib 

H7 
Public 
Utility 

Aprtmnt 
1927 

746 sqft 
1 flr 

5 fixtures 

No 
Yes 
No 

Tank 
Cop+Gal 
33 PSI 

Water
Heater 

H8 
Public 
Utility 

Single-
Family 
1922 / 
2006 

3650 sqft 
2 flr + bas 
3 fixtures 

Yes 
Yes 
Yes 

Tank 
Copper 
75 PSI 

Utility
Sink 

Faucet 

H9 
Public 
Utility 

Single-
Family 
1904 / 
95 est. 

1790 sqft 
2 flr + bas 
4 fixtures 

No 
No 
No 

Tank 
Copper 
72 PSI 

Hose 
Bib + 
Water 
Heater 

H10 
Private 

Well 

Resort 
Cabin 

1950/80 

900 sqft 
1 flr 

4 fixtures 

No 
No 
No 

Tank 
Galvan. 
65 PSI 

Hose 
Big 

Figure 5: A summary of the homes in which we collected 
data, including the style, size (1 sqft ≈ .093 sqm), age of the 
home, how many fixtures we tested, characteristics of the 
plumbing system, and where we installed our sensor.  

 

Figure 4: Our prototype sensor implementation. The 
sensor twists on to a fixture and communicates wirelessly.  
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ANALYSIS OF FIXTURE EVENT IDENTIFICATION 
Given our collected data, we now pursue a three-step 
approach to examine the feasibility of identifying individual 
fixture events according to the unique transient pressure 
waves that propagate to our sensor. Recall that each valve 
event corresponds to water hammer when a valve is either 
opened or closed. We first segment each individual valve 
event from the stream, identifying its beginning and end to 
enable further analysis. We then classify each valve event 
as either a valve open or a valve close event. Finally, we 
classify the valve event according to the individual fixture 
that generated it. This section explicitly considers only 
events that occur in isolation, deferring our discussion and 
analysis of compound events until a later section. 

Valve Event Segmentation 
Before analyzing the characteristics of a valve event, we 
first segment it (i.e., isolate it) from the surrounding sensor 
stream. Segmentation must be effective for many different 
types of events, and so it is important to consider only 
features that are likely to be most typical of all valve events. 
Our approach is illustrated in Figure 6 (and in Figure 2 and 
Figure 3). The raw signal is smoothed using a low-pass 
linear phase finite impulse response filter. The smoothed 
signal and its derivative are then analyzed in a sliding 
window of 1000 samples (one second of sensed pressure). 

The beginning of a valve event corresponds to one of two 
conditions. The most common is when the derivative of the 
smoothed signal exceeds a specified threshold relative to 
static pressure, indicating a rapid change (approximately 2 
psi/sec for a home with 45 psi static pressure, scaled by the 
home’s actual static pressure). The less common second 
condition is when the difference between the maximum and 
minimum values in the sliding window exceeds a threshold 
relative to static pressure, indicating a slow but substantial 
change (approximately 1 psi for a home with 45 psi static 

pressure, scaled by the actual static pressure). After the 
beginning of a valve event is detected via either method, the 
next change in the sign of the derivative represents the 
extreme of this valve event relative to the preceding static 
pressure (which may be a maximum or a minimum). 

The end of a segmented valve event is typically detected as 
the first point at which an extreme of a fluctuation (a 
change in the sign of the derivative, dP/dt) is less than 5% 
of the magnitude of the first extreme following the 
beginning of the event. It is also possible for an event to be 
ended by a rapid increase in the magnitude of fluctuation. 
This corresponds to the occurrence of a compound event, as 
we will discuss in greater detail in a later section. 

Applying this method to our collected in-home data yielded 
appropriate segmentations of 100% of our valve events 
from their surrounding sensor stream. 

Classifying Valve Open and Valve Close Events 
After segmenting each valve event, we classify it as either a 
valve open or a valve close event. We apply a hierarchical 
classifier that first considers the difference in the smoothed 
pressure at the beginning and the end of the segmented 
event. If the magnitude of this difference exceeds a 
threshold (approximately 2 psi for a home with 45 psi static 
pressure, scaled by the actual static pressure), the event can 
be immediately classified (a pressure decrease corresponds 
to a valve open and a pressure increase to a valve close). 
Otherwise, the event is classified according to the average 
value of the derivative between its beginning and its first 
extreme. A valve open creates an initial pressure decrease (a 
positive average derivative), while valve close events create 
an initial pressure increase (a negative average derivative). 

Applying this method to the segmented valve events from 
our collected in-home data yields 100% correct 
classification of valve open and valve close events. 

 
Figure 6: Several actual sensor streams from our in-home data collections. Each stream corresponds to a water valve being 
opened, remaining open for some amount of time, and then closed. We separately segment the valve open and valve close events 
from the sensor stream, as indicated by the highlighted regions of the streams. We estimate water flow to the valve based on the 
stabilized pressure drop while the valve remains open (the difference in pressure before the valve open versus after it). 
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Fixture Classification 
We associate valve open and valve close events with 
individual fixtures in a home using a template-based 
hierarchical classifier. When classifying an unknown event, 
we first filter potential templates according to four 
complementary distance metrics.  

The first distance metric we use is a matched filter. Very 
common in signal detection theory, the matched filter is the 
optimal detection mechanism in the presence of additive 
white noise. Its primary limitation is that the signals we 
want to differentiate are not orthogonal. Making them 
orthogonal would require specific knowledge of the source 
of each event, exactly the information we want to infer. 

Our second distance metric is a matched derivative filter. 
We include this because the derivatives of our events 
always resemble exponentially decreasing sinusoids. It is 
therefore reasonable to believe the derivatives are more 
orthogonal than the original pressure signals, and that this 
filter might provide value distinct from the above filter. 

The third distance metric is based on the real Cepstrum, 
which is the inverse Fourier transform of the natural log of 
the magnitude of an event’s Fourier transform. This 
approach attempts to approximate the original version of a 
signal that has been run through an unknown filter (the 
valve event we are trying to classify has been transformed 
by propagation through an unknown path in a home’s water 
pipes). It can be shown that the lower coefficients of the 
Cepstrum result largely from the transfer function (an 
event’s propagation through a home’s pipes) and the higher 
coefficients largely from the source (the original valve 
pressure event) [13]. We are interested primarily in the 
transfer function (in part because it allows differentiating 
among multiple instances of identical fixtures in a home), 
and so we truncate our Cepstrum to the lower coefficients. 
The resulting space is highly orthogonalized, yielding a 
third effective and complementary matched filter. 

Finally, our fourth distance metric is simple mean squared 
error, computed by truncating the longer of two events. 

Similarity thresholds used to filter potential templates based 
on these distance metrics are learned from training data 
(filtering templates whose similarity to the unknown event 
are less than the minimum within-class similarity in the 
training data). If no template passes all four filters, the 
unknown event is not classified (an application might 
ignore the event, prompt a person to label an unrecognized 
fixture, or consider the possibility that the new event 
indicates the presence of a leak). If templates corresponding 
to multiple fixtures pass all filters, we choose among them 
using a nearest-neighbor classifier defined by the best 
performing distance metric, the matched derivative filter. 

Fixture Classification Evaluation 
We evaluate fixture classification using an experimental 
design selected to demonstrate robustness of learned model 
parameters across the multiple homes in our collected data. 

Specifically, we conduct a cross-validation experiment that 
folds our data according to the home in which it was 
collected. There are ten trials in the cross-validation, with 
each trial using data from one home as the test data and data 
from the other nine homes as the training data. After 
learning model parameters from the test data (the four 
similarity filter thresholds), we classify each event in the 
test home using a leave-one-out method. Each test home 
event is classified using the other events as templates 
together with the model parameters learned in training. 

Figure 7 presents the results of this evaluation. The figure 
shows the accuracy of fixture-level identification of valve 
open and valve close events within each home (and thus 
each test fold of the cross-validation), as well as the 
aggregate 97.9% accuracy of fixture-level classification. 
The relatively poor performance in identifying fixture close 
events in H10 (77.1% vs. > 90% for other homes) was due 
to noise from the eleven cabins that share the same supply 
line at the resort. Our sensor was picking up water events 
from a portion of these cabins during data collection, 
because the cabin was not separately metered. More work is 
needed to disambiguate signals in a single-meter multi-unit 
domain (e.g., a duplex, small apartment building), but these 
results indicate a single sensor may be sufficient to sense 
across more than one housing unit on a shared supply line. 

Fixture Type 
(number of fixtures) 

Fixture Open 
Identification 

Fixture Close 
Identification 

Sinks (27 in 10 homes) 98.1% 95.1% 
Toilets (14 in 10 homes) 98.7% 97.5% 
Showers (8 in 8 homes) 95.5% 89.4% 
Bathtubs (3 in 3 homes) 100% 100% 

Clothes Washer (2 in 2 homes) 100% 100% 
Dishwasher (1 in 1 home) 100% N/A 

Figure 8: A different view of the results, showing accuracy 
of identification of individual fixtures by fixture type.  

Home Fixture Open 
Identification 

Fixture Close 
Identification 

H1 (12 valves) 100% 100% 
H2 (8 valves) 96.4% 100% 
H3 (6 valves) 100% 100% 
H4 (5 valves) 96.2% 100% 
H5 (9 valves) 100% 100% 
H6 (8 valves) 100% 90.0% 
H7 (8 valves) 100% 100% 
H8 (6 valves) 100% 97.1% 
H9 (7 valves) 97.1% 97.1% 
H10 (7 valves) 97.1% 77.1% 

Aggregate 98.9% 96.8% 
 97.9% 

Figure 7: In a cross-validation test of the robustness of 
learned model parameters across multiple homes, our 
template-based classification enables identification of the 
individual fixtures associated with valve open and valve 
close events with aggregate 97.9% accuracy. 
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Figure 8 presents a different view on the same data, 
showing the accuracy of fixture-level classification for 
different types of fixtures across homes. Our overall 
fixture-level classification across all homes is above 90%, 
including a number of cases where classification accuracy 
is 100%. All of these results are equal to or better than prior 
results by Fogarty et al. using microphone-based sensors 
[7]. Of particular note is our ability to reliably distinguish 
among different sinks within a home, as Fogarty et al. 
found that their microphone-based sensors did not capture 
enough information to reliably make this distinction. Our 
dataset contains only a few instances of clothes washer or 
dishwater use, in part due to time constraints during data 
collection and in part because Fogarty et al. found these 
fixtures can be easily recognized by their structured cycles 
of water usage (an approach that can be combined with 
ours). However, we note that our approach is independent 
of the number of fill cycles (important if a dishwasher is 
sometimes run with a pre-rinse cycle) and allows 
recognition as soon as these appliances first use water 
(in contrast to being able to recognize them only after their 
pattern of fill cycles becomes apparent).  

ANALYSIS OF FLOW ESTIMATION 
As previously discussed, the volumetric flow rate Q is 
proportional to the change in pressure ΔP divided by a 
resistance variable Rf (Q =  ΔP / Rf). We calculate the 
change in pressure ΔP by measuring the difference between 
the pressure at the onset of a detected valve open event to 
the stabilized pressure at the end of the segmented valve 
open pressure wave impulse. The resistance variable Rf 
cannot be directly measured, so we instead learn it 
empirically by capturing ground truth flow rate information 
together with the corresponding change in pressure for each 
valve. This section considers two scenarios with regard to 
learning Rf. In the first, we assume a single calibration of 
flow for every valve of interest. In the second, we attempt 
to use information from the calibration of some valves to 
estimate Rf at valves that have not been calibrated. 

Individually Calibrated Valves 
It is not unreasonable to imagine that the process of 
installing a system like HydroSense might include a single 
calibration of each fixture in a home. In such a scenario, 
each valve in the home would be labeled with a known Rf 
value which could be combined with the sensed pressure 
change ΔP to estimate water flow at those valves.  

We examined the accuracy of the flow estimation that 
might be obtained in this scenario using a cross-validation 
experiment to analyze the five calibrated bucket trials 
collected for each of the faucet and shower fixtures in H1, 
H4, H5, and H7 (as previously discussed in our in-home 
data collection section). Each trial in the cross-validation 
used a single calibrated bucket trial to infer a resistance 
variable Rf for the valve. The inferred value of Rf was then 
used to estimate flow in the other four trials according to 
the measured change in pressure ΔP. We then noted the 
difference between these estimated flow rates (based on the 

inferred Rf) and their corresponding actual flow rates 
(obtained through the calibrated bucket trials). The results 
of this experiment are shown in Figure 9. 

Three of four houses tested (H1, H4, H5) have error rates 
below 8% (or approximately 0.16 GPM**), comparable to 
10% error rates found in empirical studies of traditional 
utility-supplied water meters [1]. The fourth house (H7), 
however, had an error rate above 20%. We believe this is 
due to the installation location of the sensor. Whereas the 
first three homes had HydroSense installed on an exterior 
water bib, H7’s installation used the hot water heater drain 
valve. This results in two confounding pressure sources (the 
supply water main and the gravitational pressure of the 
water in the tank). As previously discussed, our simple 
pressure models currently assume a straight pipe. It is likely 
this situation requires a different model of Rf, and it seems 
that cold water valves in H7 were particularly affected. 
Indeed, removing H7’s four cold water valves from our 
analysis results in an dramatically improved average error 
of 0.15 GPM (SD=0.18), or 4.5% (SD=3.8%). Because our 
dataset includes only one home with both hot water heater 
installation and flow rate information, future work is 
needed to investigate the feasibility of measuring cold water 
flow using a sensor installed at the hot water heater drain. 

Generalizing to Uncalibrated Valves 
In a scenario where only some of the valves in a home have 
been calibrated, it is reasonable to attempt to build a model 
of fluid resistance for the entire home from that subset of 
valves. The key idea here is that, although the pathway to 
each valve in the home is unique, those paths also share a 
fair amount of spatial overlap in the length and overall 
layout of the piping. For example, the toilet and sink in a 
particular bathroom share the same branch.  

To examine this approach, we separated our calibrated 
bucket trials data into two datasets: a model and a test. The 
model was initially populated by a single randomly selected 
trial which was then used to infer a baseline Rf value. We 
applied this Rf value to calculate a flow estimate for each 
trial in the test dataset, comparing each to the corresponding 
actual flow. We next added a second random trial to the 
model (and removed it from the test dataset), then used the 

 

** 1 GPM ≈ .06 liters per second . 

Home Avg Error 
(GPM) 

Stdev Error 
(GPM) 

Avg 
Error 
(%) 

Stdev 
Error 
(%) 

H1 (7 valves) 0.17 0.13 7.3 6.7 
H4 (6 valves) 0.19 0.17 5.6 5.3 
H5 (8 valves) 0.13 0.11 4.5 5.5 
H7 (8 valves) 0.67 1.47 22.2 46.0 

Figure 9: In homes H1, H4, and H5, our system is able to 
estimate flow at individual fixtures throughout the home 
with error rates comparable to that found in empirical 
studies of traditional utility-supplied water meters. In H7, 
placing the sensor on a hot water heater appears to result 
in a confounding of supply water main pressure with 
gravitational pressure due to the water in the tank. 
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model to create a linear regression (Q = Rf * ΔP + b). This 
regression was used to calculate flow estimates for the 
remaining trials in the test set. This process was repeated 
until all trials had been sampled. To avoid a particularly 
fortunate or unfortunate random sampling, we repeated this 
process five times for each home and averaged the results. 
Figure 10 presents the results (note we exclude the cold 
water valves from H7, consistent with our prior analysis). 

After sampling five trials, the average error dropped 74% to 
0.27 GPM across the four homes and within 0.11 GPM of 
the more comprehensive Rf data from the previous analysis. 
This initial result indicates considerable potential for 
learning to generalize calibrations across valves in a home. 

DISCUSSION 
The initial results presented in this paper show significant 
promise for single-point sensing of whole-home water 
activity via continuous monitoring of water pressure. We 
have presented a reliable method for segmenting valve 
pressure events from their surrounding sensor stream and 
for determining whether a segmented event corresponds to 
a valve being opened or closed. Using data collected in ten 
homes, we have shown 97.9% aggregate accuracy for 
identifying the individual fixture associated with a valve 
event. Analyzing flow data collected in four of those 
homes, we have shown that an appropriately located and 
calibrated system can estimate water usage with error rates 
comparable to empirical studies of traditional utility-
supplied water meters. Our ability to identify activity at 
individual fixtures using a single sensor is itself an 
important advance, and we are not aware of prior work 
even attempting single-sensor estimation of the amount of 
water being used at fixtures throughout a home. 

Although our analysis focused on identifying fixture events 
occurring in isolation, it is clearly important to consider the 
case where multiple events overlap (see Figure 11). In 
Fogarty et al.’s prior work with microphone-based sensing, 
they note an inability to even detect this situation [7]. As an 
initial investigation, we collected six compound events in 
H1 (two each of shower/sink, toilet/sink, and 
shower/toilet/sink overlaps). Our event segmentation 
algorithm correctly segments these overlapping events 

(ending the ongoing event when it detects a rapid increase 
in the magnitude of fluctuation corresponding to the 
beginning of another event). Preliminary experiments 
suggest the magnitude and shape of the events is indeed 
altered by the overlap. Some aspects of the frequency 
domain signature remain constant (i.e., high energy 
harmonics) but we do not have enough of these events to 
convincingly evaluate the effectiveness of a classification 
procedure. Furthermore, events that occur at the exact same 
instant cannot be distinguished as separate events with our 
current segmentation algorithm. In any case, classification 
of compound events is a highly important direction for 
building upon our current results. Bathroom activity, for 
example, is dominated by the usage of multiple fixtures. 

An additional limitation relates to how closely our 
controlled experiments represent naturalistic usage of 
fixtures (e.g., how often do people partially open valves vs. 
open them full stop, how is the signal affected by the speed 
of valve opening or closure). These concerns primarily 
involve fixtures with manually controlled valves (e.g., 
bathtubs/showers/faucets vs. dishwashers/toilets/laundry 
machines). For partially opened valve events, the primary 
effect is a change in magnitude of the transient, not the 
underlying shape. We have begun longitudinal deployments 
in multiple households collecting labeled, naturalistic water 
usage data to investigate these issues further.  

We have found that reliable estimation of flow is sensitive 
to calibration, and we have noted that our segmentation and 
identification algorithms include threshold parameters that 
worked well in the homes we studied but are not necessarily 
ideal. We are interested in developing techniques for 
automatically calibrating our methods over the course of 
extended usage. For example, flow estimation could 
potentially be automatically calibrated through occasional 
knowledge of whole-home aggregate water usage. 
Continuing deployments of wireless utility meters make 
this an increasingly viable approach. We also have initial 
evidence that system behavior is stable over time, based on 
a second dataset collected in H1 five weeks after our 
original collection. We applied our fixture classification 
methods to this dataset using templates from the opposite 

 
Figure 10: Because valves share a fair amount of spatial 
overlap in the length and overall layout of their piping, it is 
possible to learn to generalize calibrations across valves.  

 
Figure 11: Our existing event segmentation correctly 
identifies and segments overlapping events (shown here for 
overlapping shower, toilet, and faucet valve open events), 
and classification of such compound events is an important 
direction for future work. Prior work was unable to even 
identify the occurrence of compound events.  
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dataset (classifying unknown events using templates 
collected 5 weeks apart), finding no degradation in fixture 
identification performance. This preliminary analysis 
suggests system behavior might be stable enough to apply a 
variety of machine learning methods for auto-calibration. 

Our in-home data collection included installations at several 
different types of fixtures (hose bibs, utility sink faucets, 
water heater drain valves) with generally good results. We 
conducted two identical collections in H9, one using a hose 
bib and one using the hot water heater drain valve, under 
the expectation performance would be nearly identical. 
Figure 7 reports performance for the hose bib, but we were 
surprised to find performance fell to 88.6% for open events 
(from 97.1%) and 77.1% for close events (also from 97.1%) 
when we moved the sensor to the water heater drain valve 
(only individual fixture classification was affected, not 
segmentation or the determination of whether events are 
open or close events). On one hand, this highlights an 
opportunity to further explore the role of sensor placement. 
On the other hand, there are many other examples in 
Figure 7 where our current approach differed in its ability to 
identify the fixture associated with valve open and close 
events. Although these obviously come in pairs, our current 
approach classifies them individually. We believe there is a 
significant opportunity to examine methods for jointly 
classifying pairs of valve open and valve close events. 
Similarly, we currently estimate flow independent of fixture 
identification, but the two are clearly related and an 
improved method could consider them simultaneously. 

CONCLUSION 
We have presented a new approach to single-point 
infrastructure-mediated sensing of whole-home water 
activity. Our initial results both validate the effectiveness of 
our approach and provide a basis for future analyses and 
improvements. The infrastructure-mediated sensing strategy 
shows significant promise as a practical, low-cost, and 
unobtrusive approach to the broad deployment of sensing-
based ubiquitous computing applications. 
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