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Figure 1: Z-Ring senses bio-impedance changes caused by various interactions, e.g., with objects, finger motions, and metallic
surface elements like copper tape. By analyzing impedance over time and frequency, shown via spectrograms (A, B, C right),
these impedance changes can drive (A) object identification, (B) gestural interactions, and (C) interaction with tangible user
interface elements.

ABSTRACT
We present Z-Ring, a wearable ring that enables gesture input, ob-
ject detection, user identification, and interaction with passive user
interface (UI) elements using a single sensing modality and a single
point of instrumentation on the finger. Z-Ring uses active electrical
field sensing to detect changes in the hand’s electrical impedance
caused by finger motions or contact with external surfaces. We de-
velop a diverse set of interactions and evaluate them with 21 users.
We demonstrate: (1) Single- and two-handed gesture recognition
with up to 93% accuracy (2) Tangible input with a set of passive
touch UI elements, including buttons, a continuous 1D slider, and a
continuous 2D trackpad with 91.8% accuracy, <4.4 cm MAE, and
<4.1cm MAE, respectively (3) Object recognition across six house-
hold objects with 94.5% accuracy (4) User identification among 14
users with 99% accuracy. Z-Ring’s sensing methodology uses only
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a single co-located electrode pair for both receiving and sensing,
lending itself well to future miniaturization for use in on-the-go
scenarios.
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1 INTRODUCTION
Our hands provide a window into our intentions, context and ac-
tivities. As the body’s primary manipulator, the hand engages in a
wide variety of tasks, such as grasping objects, gesturing to signal
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intention, and operating interactive controls. Wearable sensing can
elucidate these interactions, providing context or input to enable
richer and more powerful computational experiences for gaming,
augmented and virtual reality (AR/VR), and ubiquitous computing.
In this work, we introduce a sensing system that leverages electric
field sensing in a unique antenna topology. With this single sens-
ing modality, we can detect four separate hand-related activities
— held-object recognition, gesture sensing, tangible UI interaction,
and biometric identification — all with only a single point of in-
strumentation on the base of a user’s finger. To our knowledge, we
present the first system to achieve such a wide diversity of hand-related
activities with a single piece of hardware.

Our approach leverages the human body’s electrical conductiv-
ity by appropriating the hand as an antenna. As the hand assumes
different poses, grasps objects, or touches conductive surfaces, the
electromagnetic properties of this antenna system change. These
changes can be quantified by measuring the hand’s bio-impedance,
generally denoted by 𝑍 , which serves as the basis of our sensing
system. Z-Ring, our custom-designed ring prototype, can detect
subtle touches and finger movements, enabling micro-gesture in-
teractions for input. Since electrical signals from the ring can travel
through the hand to external objects or surfaces contacted by the
hand, Z-Ring can detect variations in the hand’s impedance profile
that are caused by external interactions, enabling recognition of
objects the hand is holding without modifications to those objects.

Additionally, to utilize this capability, we created a set of inter-
faces, i.e., various buttons, a 1D slider, and a 2D trackpad, that func-
tion with Z-Ring. We designed the interface geometry to provide
varying impedance profiles in response to different interactions,
which Z-ring detects to determine the point of contact using no
additional interface electronics or batteries. Further, Z-Ring can
identify the wearer due to anatomical variations of the human body
that produce a distinct frequency signature response.

Unlike previous systems, which instrument an object (e.g., door-
knob) to become an antenna [58] or that wrap the hand around
a device with an embedded antenna [34], Z-Ring instead uses the
hand itself as a duplex antenna. The system can thus adopt a wear-
able form factor that, in turn, opens interactive possibilities to a
wider application space. Previous work on body-as-antenna [13]
relied on ambient RF signals for operation, limiting its operation
to a specific location, or relied on RF emission from devices for
detection, limiting its use to active objects [38]. However, Z-ring’s
active impedance sensing approach enables its use anywhere and
with passive external objects. Additionally, Z-Ring uses a broad
range of frequencies for sensing, providing a richer set of sens-
ing capabilities compared to systems that use discrete frequency
impedance sensing [31, 86].

This work makes the following contributions:

(1) We apply a novel duplex topology ofmulti-frequency impedance
sensing to enable a single-point-of-instrumentation, wear-
able form factor for human-computer interaction.

(2) We demonstrate the potential of Z-Ring’s single sensing
modality across diverse applications: (a) one- and two-handed
gesture recognition, (b) held object recognition, (c) discrete
and continuous touch input on uninstrumented, passive user
interfaces, and (d) user identification and authentication.

(3) We evaluate Z-Ring’s performance for each application area
in user studies and show that it performs robustly and con-
sistently across users, applications, and time.

2 RELATEDWORK
Z-Ring research intersects five areas of related work. From the
sensing modality perspective, it extends work in radio-frequency
and electric field sensing but employs a unique topology, widening
its interactive potential. From the application standpoint, Z-Ring
builds upon work in four domains, i.e., hand gesture detection,
object detection, surface UI interaction and user identification. We
first examine how Z-Ring relates to previous field sensing and
RF work, organizing our discussion by sensing topology. We then
highlight non-electric sensing systems adjacent to Z-Ring in each
application space.

2.1 Electric Field and RF Sensing of the Hand
and Body

The human body is a lossy conductor of high frequency electric
fields [19], allowing it to act as a transmission medium for AC
signals or as a shunt to ground. This property has been widely
employed for human-computer interaction for proximity, touch,
communication, identification, medical imaging, and motion sens-
ing applications. We examine these works in the context of their
electrode (i.e., antenna) topology, extending the taxonomy from
Zimmerman et al. [91] and Grosse-Puppendahl et al. [21], as shown
in Fig. 2.

2.1.1 Mutual Capacitance. In themutual capacitance or shunt mode
configuration, the proximity of the hand or body to a transmitting
and receiving electrode pair modifies the mutual capacitance be-
tween the two electrodes. This technique is widely used in touch-
screens and trackpads. AuraSense [88] uses different configurations
of a single transmit and four receive electrodes around a watch
body to enable in-air radial input and on-skin buttons and sliders.
The authors note a limitation of mutual capacitance for this ap-
plication: as the transmit and receive electrodes are placed closer
together, the projected E-field is bound closely to the electrodes,
necessitating proximate interaction. While this property is advanta-
geous for touchscreen sensing, reducing power and noise, it poses a
challenge for far-field sensing when attempting to fit the electrodes
onto a compact wearable. Unlike mutual capacitance configurations,
Z-Ring adopts a small electrode configuration by injecting signal
within the body, using the body itself as a transmission medium.

2.1.2 Self Capacitance. Self-capacitance or loading mode sensing
utilizes the same electrode for both transmit and receive. As a
ground-coupled body moves closer to the electrode, some of the
field is directed through the body, modifying the electrode’s capac-
itance. eRing [77] and PeriSense [76] both propose a ring-based
peripheral with electrodes on the outside of the device. By sensing
adjacent finger positions, they can classify discrete hand postures.
Touché [58] proposes a swept frequency capacitive sensing method
for instrumenting conductive objects (e.g., door knob or water tank)
to be touch sensitive. Like Touché, we a implement swept frequency
approach, enabling capture of changes in touched object detection
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Mutual Capacitance
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Ex.: AuraSense [88]

Self Capacitance

Tx/Rx

Ex.: eRing [77], PeriSense [76],
Touché [58], Capacitive Fingerprint-
ing [25], AtaTouch [34], EtherPose
[32]

Hand-as-a-Transmitter

Tx Rx

Ex.: Hantenna [62], Vu et al. [71], Bio-
metric Touch Sensing [28]

Hand-as-a-Receiver

Tx Rx

Ex.: DiamondTouch [16], Carpacio
[73], EM-Sense [39], Maekawa et al.
[49]

1

Hand-as-a-Waveguide

Tx Rx

Shield

Ex.: Personal Area Network [90],
Tomo [85], Zensei [63], Cornelius et
al. [15], SkinTrack [87], BodyRC [75],
ActiTouch [86], ElectroRing (w/ active
shield) [31]

Hand-as-a-Reflector

Tx Rx

Ex.: Soli [46], ThuMouse [43]

Hand-as-a-Transceiver

Tx/Rx

Ex.: Z-Ring (this work)

Figure 2: Various electric field sensing topologies categorized
by transmit and receive antenna coupling configuration (see
[21, 91]). Z-Ring’s unique topology combines and extends
elements of existing topologies. Note: Body capacitance to
ground is present in all systems but is omitted here, where it
is parasitic rather than utilized for sensing.

and user identification (see Capacitive Fingerprinting [25]); how-
ever, we use a broader frequency range. Unlike Touché, we galvani-
cally inject AC signal into the body via a worn device, permitting
hand gesture capture without the user touching an instrumented
object.

AtaTouch [34] presents a VR controller designed to robustly de-
tect pinches. As the user closes their fingers around a central 6 cm
linear antenna buried in the handle, the antenna’s far-field coupled
return loss value changes. EtherPose [32] extends AtaTouch by
designing two wrist-mounted cloverleaf antennae to sense contin-
uous hand pose and microgestures. To obtain sufficient signal, the
antenna is designed to be resonant at 1.4 GHz, yielding a 2 cm diam-
eter and a large tuning ground plane. Like AtaTouch and EtherPose,
Z-Ring also uses impedance sensing via a vector network analyzer
(VNA), with the same electrode for transmit and receive. However,
unlike these two works, Z-Ring injects a swept frequency, with
the hand as an antenna, rather than detuning an external resonant
antenna. This enables an electrode configuration that is much more
compact and lets Z-Ring sweep a larger frequency range (1 MHz to
1 GHz) for richer interaction modalities.

2.1.3 Body-as-Transmitter. As a lossy conductor, the body itself
can be appropriated as a transmitting antenna, e.g., when holding
a car fob to one’s head to extend its range in a crowded parking
lot. Hantenna [62] explores the properties of the human body as
a transmitting (or receiving) dipole antenna, with users directly
contacting electrodes attached to a VNA. They find that the body
can improve link levels by up to a substantial 15 to 20 dB. Vu et al.
[71] and Biometric Touch Sensing [28] both utilize a body-injected
signal via a ring and wristband, respectively, for user identification
when interacting with a sensing tablet. Z-Ring also injects signal
into the body, but it senses the reflected signal via the same electrode
and therefore requires no external devices for sensing.

2.1.4 Body-as-Receiver. Similarly, the body can also act a receiver.
Like Biometric Touch Sensing, DiamondTouch [16] also enables
user identification through touch interactions; however, in this
configuration, the interactive table is a transmitter, and the body
and chair act as a receiver. Carpacio [73] uses this same princi-
ple to identify touches on a car’s touchscreen. For touched object
interaction, Cohn et al. [13] use an electrode on the rear of the
neck to measure changes in ambient RF signal (such as power lines
and appliances) as users touched appliances, light switches, and
walls. Humantenna [14] extends the technique to sense whole body
poses. Finally, in the domain of held object detection, EM-Sense [39]
and Maekawa et al. [49] use a radio and wire coil, respectively, to
capture broadband electromangetic noise generated by electrically
active household objects. In contrast, Z-Ring uses an active sensing
approach to excite the hand and held objects and can therefore
recognize objects that are electrically passive.

2.1.5 Body-as-Waveguide. The body-as-waveguide or intrabody
coupling configuration combines both transmit and receive topolo-
gies, with the body in direct galvanic contact with both electrodes.
This configuration has historically been investigated for intrabody
and interbody communication networks [90] and in the medical
context to non-invasively examine the body’s internal make up and
tissue properties [7]. For example, Usman et al. propose a ring-based
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bioelectrical impedance analyzer to estimate body fat [70]. Zensei
leverages wide spectrum bio-impedance sensing to identify users
from a set of six electrodes via instrumented objects [63] .Closer
to our work, Cornelius et al. [15] present an eight-electrode, bio-
impedance sensing wristband. The system features a 98% accuracy
among 8 individuals and an authentication accuracy of 86.9%.Z-
Ring also senses body composition variation to enable biometric
user identification and authentication; however, our system uses
one electrode pair on the index finger.

Intrabody coupling methods have also been leveraged for ges-
ture applications. Tomo [85] "images" the internal composition of
the forearm with a band of eight electrodes performing EIT, en-
abling the system to classify 11 discrete hand gestures. BodyRC
[75], ActiTouch [86], SkinTrack [87] and ElectroRing [31] all cou-
ple high frequency alternating current into the body and measure
impedance changes from skin contact. BodyRC uses two electrodes
on the left and right arms to differentiate touches between each
arm, while ActiTouch uses an electrode on a VR headset and wrist-
band for the same purpose. SkinTrack couples an 80 MHz transmit
frequency via a ring and senses the impedance at four locations on
a watch body, enabling 2D interaction on the skin near the watch.
ElectroRing proposes a single-point-of-instrumentation ring with
transmit and receive pairs separated by an active shield that can
robustly detect pinches, touchdowns and releases. In contrast, Z-
Ring’s impedance sensing technique uses a single active electrode
as both transmit and receive without the need for an active shield.
Additionally, Z-Ring uses a wideband frequency sweep instead of a
single-frequency measurement, enabling a wider range of gestures
and interactive applications beyond touch recognition.

2.1.6 Body-as-Reflector. Radio-frequency EM waves reflect off
sharp changes in impedance, such as when they encounter the
boundary between air and a body. Doppler radar uses this phe-
nomenon to measure spatial changes, including subtle ones such
as those associated with thumb-to-finger microgestures. Several
papers have evaluated radar methods using external benchtop an-
tennas to capture microgesture interactions [22, 26]. Google’s Soli
project miniaturized a 60 GHz radar system into a single integrated
circuit (IC) capable of measuring dynamic gestures [46, 74]. Thu-
Mouse extended this work to enable continuous movement [43].
Unlike approaches that use external antennae to radiate RF signals
into the air, Z-Ring uses lower frequencies that can be coupled into
the body via a wearable device, allowing changes in the signal when
a pinch, touchdown, or touch up occurs.

2.1.7 Body-as-Transceiver. Z-Ring employs a unique topology, which
we call body-as-transceiver, that combines and extends elements of
the preceding configurations. Similar to body-as-waveguide, this
topology galvanically injects and receives current through the body
as a transmission medium, although it can use a single active elec-
trode (like self-capacitance) for both transmit and receive to enable
a single-point-of-instrumentation. As an active transmit sensing
method, our topology is less sensitive to EM noise than passive ap-
proaches, but it remains vulnerable to potential swings between the
system’s ground and the earth ground (such as when a user takes off
their shoes). To suppress potential swings, we employ a bias resistor
between an electrode to the local body ground and Z-Ring’s sensor
ground (see Sec. 3.1). Additionally, our signal processing methods

either directly employ or learn adaptive normalization over time.
Z-Ring’s configuration sweeps a wideband frequency range from
low MHz to low GHz to collect a rich impedance profile, a key ad-
vantage over previous works like EtherPose and ElectroRing. This
feature makes possible four separate interaction applications on the
same hardware: gesture sensing, held object detection, passive UI
interaction, and user identification. To our knowledge, no previous
work (E-field sensing or not) spans this breadth of tasks.

2.2 Non-Electric Field Sensing Approaches
We now highlight non-electric field (EF) sensing approaches in each
of Z-Ring’s four application domains.

2.2.1 Hand Gesture Detection via Non-EF Wearables. Commercial
hand gesture detection systems [1, 2, 52] often rely on optical meth-
ods, using cameras mounted on external devices such as AR/VR
headsets or necklaces. However, these systems require a clear line
of sight to the hand, complicating efforts to detect gestures made
outside the camera’s field of view. Therefore, many systems have
explored sensors mounted on the wrist, hand, and/or fingers, span-
ning a wide range of modalities: optical ([11], [33], [50], [10], [48]),
([20], [84]), bio-acoustic ([4], [53], [82]), ultrasonic ([29], [81]), me-
chanical ([69], [47], [35]), and inertial ([23], [51], [18], [44]). The
capability of these devices ranges from detecting pinches to recog-
nizing discrete gesture sets to driving full kinematic models.

However, these approaches have several limitations: (1) passive
IMUs and bio-acoustic techniques can detect when the fingers make
contact but not when they release, which is important for actions
like dragging and dropping; (2) IMUs used for gesture sensing
require multiple points of instrumentation, making the system
awkward to use; (3) optical and ultrasonic techniques require a
clear line of sight to each gesturing appendage, limiting possible
mounting positions and making it difficult to detect pinches; and
(4) mechanical and magnetic systems require instrumentation of
the whole hand, back of the hand, or fingertips, making the system
uncomfortable to use. In contrast, Z-Ring instruments the body at
only a single location, i.e., the base of the index finger, an ergonomic
and socially acceptable area for worn systems. By using the body
as a transmission medium, Z-Ring does not require line-of-sight
for microgesture sensing. In addition, it can robustly sense both
touchdown and touch up events for one- and two-handed gestures
even if touch velocity is low.

2.2.2 Held Object Detection via Non-EF Wearables. Recognizing an
object that a user is holding can provide insight into the user’s activ-
ity or intention. InDexMo [45] uses a finger-worn RFID transceiver
to recognize tagged objects. However, this impractical approach
requires tagging or modifying each object. Other methods identify
objects by assessing the user’s grasp, such as using EMG [17], wrist
topography [61], and inertial sensors [9]; however, these methods
are highly sensitive to variations in the user’s grip.

Viband [37] and VibEye [57] both use vibrations to identify ob-
jects. Viband uses an oversampled IMU to detect the characteristic
vibrations of active objects, such as a drill or blender. VibEye identi-
fies passive objects by actively exciting the object mechanically and
capturing the resulting vibration, reporting an accuracy of 92.5%
across 16 objects. Similarly, Z-Ring also uses active excitation, but
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in the electrical domain, allowing it to recognize electrically pas-
sive objects, unlike EM-Sense [39] and Maekawa et al. [49] (see Sec.
2.1.4).

2.2.3 Passive User Interfaces. Passive user interfaces provide an
input surface that does not require a power source or batteries to op-
erate. Multiple sensing modalities have been investigated to enable
such input. Audio-based input, such as Scratchinput [24], provides
passive input on textured surfaces by analyzing the sound produced
by dragging a fingernail across the surface. Acoustruments [36] also
uses audio to provide passive input by combining low-cost and pow-
erless mechanisms with portable devices. OptoSense [83], which
uses an array of photodiodes to detect motions performed over it,
is powered by ambient light captured from the environment. Other
optical approaches, such as Magic finger [78] and LightRing [30],
use a tiny camera on the fingertip with a gyroscope and proximity
sensor, respectively, to convert any surface into an input medium.
UbiquiTouch[72] operates a low-power touch sensor on energy
harvested from ambient light. IDsense [42], PaperID [41], RIO [59],
and RapID [66] give passive input via RFID tags whose backscatter
signals are detectable by neighboring RFID readers, which then
interpret the interaction based on this data. MARS [5] provides
passive touch surfaces through an ultra-low power sensing and
back-scatter communication system.

While the research discussed here provides passive input capa-
bilities, it is either limited in interactivity, expensive to deploy, or
requires specialized infrastructure, such as RFID readers, in the envi-
ronment. Z-Ring addresses these limitations by providing rich input
capabilities on low-cost interfaces that operate without electronic
components or batteries.

2.2.4 User Identification via Non-EF Wearables. Biometric recog-
nition systems can regulate access to resources or enhance per-
sonalization for interactive applications. Wearable systems use
widely varied sensing methods to collect distinguishing biometrics:
impedance (Sec. 2.1.5), PPG, ECG, iris, gait sensing via accelerome-
ter, heartbeat sounds, and skin conductance [8]. Since wearables
often contain several of these sensors for fitness and activity recog-
nition, these sensing modalities can be hybridized with each other
or with more traditional techniques, such as passwords, to increase
specificity or provide continuous authentication [67]. For example,
Nymi [56] uses an onboard fingerprint reader for user authenti-
cation, ECG for continuous "liveness," and an NFC transmitter to
communicate with the host system. Z-Ring similarly offers meth-
ods of continuous user recognition for more secure, context-aware,
or personalized experiences. Beyond non-EF methods, Z-Ring is
extensible, permitting authentication when the user is physically in
contact with a resource by combining its capabilities of held object
recognition, user identification, and transmission through the body.

3 Z-RING
The Z-Ring prototype consists of a ring with an electrical setup that
measures the impedance of a user’s hand. An impedance change
can occur when the user moves their fingers, holds an object or
touches an external surface. By analyzing the change in impedance
over time, Z-Ring can detect a gesture the user performs, identify

the interactions with custom-designed passive user interfaces, rec-
ognize the object held in the user’s hand and identify the users
themselves. For the explorations in this paper, the Z-ring prototype
is worn on the index finger.

3.1 Sensing Technique
When an electromagnetic wave travels from one transmission
medium to another, part of the wave passes through to the new
medium and the remainder is reflected back into the originalmedium
due to the impedance mismatch between the two mediums. Mea-
suring the magnitude and phase of the reflected wave at the trans-
mission interface can assist in comprehending the new medium’s
impedance characteristics. This technique is typically applied in
electrical engineering to measure the impedance of an antenna:
a vector network analyzer (VNA) applies a continuous wave sig-
nal with a frequency that varies with time to an antenna being
tested and analyzes the reflected signals to determine the antenna’s
impedance as a function of frequency. We employ this technique
to analyze the hand as if it were an antenna, reading its impedance
over frequency.

The human body absorbs RF waves and permits transmission at
specific frequencies [19], allowing the hand to act as an RF antenna.
Z-Ring leverages this phenomenon by injecting a small RF signal
into the body through its contact with the finger and capturing
the reflected signal to measure hand impedance. As the hand pos-
ture changes, the antenna geometry changes, in turn changing the
associated impedance.

Additional impedance change may occur if the hand touches
exterior surfaces, such as external objects or other parts of the
user’s body. The signal initially injected from the ring can then flow
through the user’s hand to the exterior surfaces, causing the signal
to reflect at the newly constructed boundaries between the hand
and surface, resulting in additional impedance change. This change
can provide information useful for identifying hand interactions
with external surfaces.

3.2 Electrical Setup
Z-Ring measures impedance by measuring the reflection coefficient,
also known as S11, a metric that specifies the amount of a wave
that is reflected by an impedance discontinuity in the transmission
medium. The magnitude component of this measurement is defined
as the ratio of the reflected wave’s amplitude to the incident wave’s
amplitude. The S11 port of a VNA is used to perform this mea-
surement. The prototype Z-Ring has two electrodes for measuring
impedance with a VNA: the signal electrode transmits the signal
into the hand and reads the reflected signal, while the bias electrode
biases the hand to a local ground through a 2 MΩ biasing resistor.
Figure 3a shows this arrangement.

Figure 3b shows the simplified circuit of Z-Ring’s electrical model.
The hand is modeled as a lumped combination of a variable resistor
𝑅𝑏 , capacitor 𝐶𝑏 , and inductor 𝐿𝑏 , whose values are based on hand
posture and what the hand is touching externally. The hand is fed
an AC signal through a 50 Ω transmission line. Due to the ring-skin
interface’s impedance mismatch, part of this signal reflects, and the
rest propagates to the hand. 𝑅𝑒 and 𝐶𝑒 represent this impedance
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mismatch. 𝑅𝑒 depends on factors like skin moisture, and𝐶𝑒 is deter-
mined by variables, e.g., how tightly the electrodes are in contact
with the skin.

The hand is also coupled to the sensor’s local ground through
a 2 MΩ resistor. 𝐶𝑝 represents parasitic capacitance as the body
couples to the earth ground. Factors like the material and thickness
of the user’s shoe soles and the number of feet in contact with the
floor affect𝐶𝑝 .𝐶𝑝 is relatively small due to the weak coupling with
the earth, and the hand’s impedance mainly defines the circuit’s
impedance.

(a) Electrodes (shown in yellow) on the finger. The signal electrode
is towards the finger’s tip, and the ground electrode is below it.

(b) Simplified equivalent circuit of Z-Ring’s electrical model.

Figure 3: Z-Ring’s electrical setup.

4 BACKGROUND EXPERIMENTS
Our sensing approach uses the human hand as a broadband, full-
duplex antenna. The hand is a complex structure comprised of
multiple layers, such as skin, muscle, fat, and bone, which affects its
behavior as an antenna. To better understand its antenna function,
we conducted simulations to characterize its properties, investi-
gating the frequency response of the hand and how it changes in
different postures when holding objects or in contact with external
surfaces.

We performed simulations using CST Microwave Studio [68], a
commercial electromagnetic analysis suite. CST employs numer-
ical techniques (the finite element method and finite integration
technique) to simulate the behavior of electromagnetic fields in
complex structures. We leverage Hugo [65], an electromagnetically
accurate 3D model of the human body from the US National Library
of Medicine. Using CST Studio’s PoserGUI, we used copper material

to create hand models in different postures and their electrodes as
3D shapes. Figure 19 shows an example hand model with the ring
electrodes.

We provide simulation experiment specifics and results in Sec.
A. Results show that the frequency range from 1MHz to 1000MHz
is optimal for absorption by the human body. Hence, we use this
range for gesture recognition; simulations for passive interfaces
also indicate that this range is ideal. For object detection, we found
that at frequencies exceeding 500MHz (to 1000MHz), the ring starts
to couple with the object through the air as the signal wavelength
becomes comparable to the object dimension. Hence, we use 1MHz
to 500 MHz for object recognition experiments. For user identifica-
tion and authentication, frequencies between 1MHz-400MHz show
the most distinct response, so we use these for our investigation.

5 IMPLEMENTATION
As noted, the Z-Ring prototype has two electrodes. The signal
electrode transmits the signal into the hand and reads the reflected
signal; the bias electrode biases the hand to a local ground through
a 2 MΩ resistor. We designed each electrode as a 65 mm by 8 mm
exposed copper region on a flexible printed circuit board (PCB)
built on a polyimide sheet. Figure 4a shows the electrode setup.
The flexible PCB lets the electrodes wrap conformally around the
user’s finger within the ring. Both electrodes are placed adjacent to
one another along their entire length, with a 4 mm gap between
them. To prevent skin and environmental moisture from causing
oxidization, we coated the electrodes with gold using the electroless
nickel immersion gold (ENIG) technique.

On the opposite side of the electrodes, the flexible PCB features
a U.FL connector to connect a shielded coaxial cable between the
electrodes and the VNA. The same side contains the bias resistor
for the ground electrode. The flexible PCB is affixed to a velcro
strip with double-sided tape, allowing the electrodes to be wrapped
around fingers of varying sizes. The flexible PCB mounted on the
velcro constitutes the ring setup. We show this configuration in
Figure 4b.

The S11 measurements are captured with a portable VNA (called
LiteVNA[80]). LiteVNA is powered by a rechargeable battery and
supports a frequency range from 51 kHz to 6 GHz. The units draw
2.4 W (of which 1.16 W is measurement circuitry and display driver
and 1.22 W is LCD backlight). We secured the VNA to the user’s
wrist using a Velcro strap to maintain a short connection between
the ring and S11 port; the VNA’s small form factor measures around
91 mm by 58 mm, making it suitable for this purpose.

Each S11 measurement is made by transmitting a sweep of signal
frequencies between a given start and end frequency andmeasuring
the reflected signal for this sweep. The VNA is configured to record
this response as a 51 data point array and perform 30 sweeps per
second, thus setting the sample rate of 30 Hz. The user application
determines the start and end frequencies, which can vary (between 1
MHz to 1 GHz). The data is transmitted over awired USB connection
to a MacBook Pro laptop, where a custom Python application logs
and analyzes it. Notably, even when not plugged into the laptop and
battery-powered, our prototype generates the same amplitude of
S11 change during interactions. We set the VNA’s maximum output
power to 5 dBm, which is considered safe for humans [3]. Section
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6 describes the software processing pipeline for each interactive
task.

(a) Both sides of the electrode setup utilized in the Z-Ring prototype
on a flexible printed circuit board.

(b) A user wearing the Z-Ring prototype with a portable VNA
strapped to their wrist.

Figure 4: Electrodes for the Z-Ring prototype.

6 APPLICATION DOMAINS
We now describe the data processing pipeline, evaluation and re-
sults from our user studies of four application domains: gesture
recognition, object recognition, tangible user interfaces, and user
identification. The study included 21 participants (4 female; average
age 27.7, min 18, max 33). All participants did not participate in
each app sub-study for logistical reasons. Each sub-study varied
in length from one to three hours, and participants completed sub-
studies in a single session. No data was omitted for performance
reasons. The user research took place over a span of three months.

6.1 Gesture Input
Z-Ring provides input via hand gestures, enabling always-available
input for wearable or environmental computing control. It supports
two different types of interactions: one-handed and two-handed
interactions. The former provides subtle interactions between the
thumb and index finger, while the latter facilitates interaction with
one hand on the back of the other. We offer five distinct gestures for
both scenarios: tap, double tap, long tap, and left and right swipe.
Figure 5 demonstrates how these interactions are performed. For
example, the various taps support different selection possibilities in
a user application, and the bidirectional swipes enable navigation.

6.1.1 Recognition. Gesture recognition is built upon the frequency
domain and temporal pattern generated in the S11 measurements
made while performing the gestures. Changes in the frequency
domain occur due to new propagation paths for the transmit signal

(a) One-handed Z-Ring gestures. The gestures are performed with
the thumb on the side of the index finger. The different taps aremade
close to the index finger’s tip, while the swipes are made between
the tip and past the middle of the finger.

(b) Two-handed Z-ring gestures. The gestures are made with the
index finger of the hand carrying the ring on the back of the other
hand’s palm. The various taps are made close to the back of the
hand’s center, and the swipes cover most of the hand back’s length.

Figure 5: The Z-Ring gesture set for one- and two-handed
input and the optimal location to perform gestures.

while performing the gesture. Figure 6 shows the new signal paths
generated while performing one- and two-handed gestures. Tem-
poral patterns result from finger motions needed to complete the
gesture. For instance, the time-varying movement of a double tap
differs from that of a single tap, and so on. We use S11 magnitude
as the feature of choice in our modeling approach, but we also
explored using phase shifts. However, phase shifts displayed low
stability since the signals pass through the hand, a lossy transmis-
sion medium producing unpredictable phase shifts.

The S11 measurements for gesture recognition are taken using
a frequency sweep ranging from 1 MHz to 1 GHz. The gesture
recognition pipeline begins by applying a moving median filter to
the live S11 data stream with a sliding window of 200 milliseconds.
This emphasizes impedance changes while attenuating the noise
generated by motion artifacts. Then, 1.5-second windows of S11
data (about 45 S11 samples at 30Hz) are singly processed to detect
any gesture executed. All S11 samples in each window are vertically
stacked to produce a spectrogram; Figure 7 shows spectrograms
for the five gestures and the window in which no gestures were
performed (null state).

The spectrogram is then resized to 25-by-25 and fed into a con-
volutional neural network (CNN) to identify the gesture. Figure 8
shows the architecture of our CNN. Since the gesture could occur
anywhere within the 1.5-second window, we produce synthetic
data by moving this window in time between -600 and 600 mil-
liseconds in increments of 30 milliseconds and append it to the
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original data when training the CNN model. The time shifting is
accomplished by rolling the spectrogram along the time axis while
wrapping around the edges.

For our evaluation, we built both user-independent and user-
dependent models. For the former, we additionally augment the
training set by generating data from rolling the spectrograms along
the frequency axis: because each person’s unique hand anatomy
results in impedance responses in different frequency bands, we roll
the spectograms in this way for the model to learn patterns across
the whole frequency domain and be able to generalize. We slide
the spectrogram for 500 Mhz (in increasing frequency direction)
in steps of 20 MHz and wrap it around the edges. Therefore, for
user-independent models, the training set is augmented both in the
time and frequency domains.

(a) For one-handed gestures, the path is a loop completed between
the index finger and thumb.

(b) For two-handed gestures, the path is a loop via bothhands through
the torso.

Figure 6: The new electrical paths created (purple) between
the two ring electrodes (yellow) when performing a one- or
two-handed gesture.

6.1.2 Evaluation. We evaluated the one- and two-handed gestures
in user studies with 14 and 15 individuals, respectively. Participants
sat in front of a computer screen that displayed visual cues to
perform a specific gesture. Both one- and two-handed gestures
followed the same study protocol; the study required participants
to complete each of the five gestures and a null gesture. A motion
other than making specific gestures was considered a null gesture;
participants interacted with the desk and their personal belongings,
like phones, wallets, keys, etc., with both hands during this time.
The null gesture was designed to let us examine how the recognition
system would perform when the user engages in other activities. In
total, each participant made 180 gestures (= 6 sessions × 6 gestures

× 5 repetitions per gesture), enabling us to evaluate a single set of
interactions (one- or two-handed). Participants were instructed to
remove and re-wear the ring after each session so we could evaluate
cross-session performance more accurately.

6.1.3 Results. We chose accuracy as our primary metric for mea-
suring the recognition system’s performance.We analyze and present
both user-dependent and user-independent recognition models. For
the former, we use the first four of the six data sessions collected
to train the CNN, which we then test on the final two sessions.

For the user-dependent model for one-handed gestures, Figure 9
shows recognition accuracy per participant. The average recogni-
tion accuracy is 93.14%, with the highest at 100% for P4 and the
lowest at 89% for P2. Figure 10a shows the confusion matrix for
this result. We see that the most challenging gesture to distinguish
is the left swipe, which is confused with the right swipe and tap
gesture. We can improve this result by replacing the tap gesture
in the user application with a double tap or long tap. The null ges-
ture is recognized with a high accuracy of 96.1%, suggesting that
the recognition system provides tolerance to false positives while
accurately recognizing gestures.

The average recognition accuracy for the user-dependent model
for two-handed gestures is 92.67%, with the highest at 98% for P21
and the lowest at 86 for P1 and P10. Figure 9 displays the accuracy
per participant. The confusion matrix in Figure 10c reveals that
the left swipe, confused with the long tap, is the most challenging
gesture to differentiate; long tap is also often confused with left
swipe. Therefore, excluding the long tap from this gesture set can
increase its accuracy.

For user-independent analysis, the CNN model was trained on
all six data sessions from all but one user and tested on all data
sessions from the left-out user. This process was repeated for each
user.

The average recognition accuracy for the user-independent model
for one-handed gestures is 88%, with the highest and lowest accuracy
at 99% and 77%, respectively, for P4 and P1, as shown in Figure 9.
The confusion matrix in Figure 10b shows that double tap is the
most challenging motion to recognize.

For the user-independent model for two-handed gestures, the av-
erage recognition accuracy is 83.67%, with the highest at 92% (P4),
demonstrating the potential for a generalizable gesture set. Figure
10d shows the confusion matrix for this result.

Overall, Z-Ring provides gesture input that functions across the
population with high accuracy but can deliver additional robustness
with further fine-tuning via user-specific models. Collecting the
data over a period of three months demonstrates that Z-Ring’s
performance (cross-user) remains stable over time.

6.2 Tangible User Interfaces
Z-Ring provides a new method for measuring surface impedance
by touch. We use this method to develop physical user interfaces
and design them so each offers a unique characteristic impedance.
Z-Ring can identify the touch and interaction with these interfaces
based simply on their different impedance signatures, enabling the
development of passive and battery-free interactive user interfaces.
We propose three user interfaces: buttons, a continuous 1D slider,
and a continuous 2D trackpad. Figure 11 illustrates these interfaces.
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Figure 7: Spectrogram images for various one-handed gestures and for a window of data where the action performed was not a
gesture (Null). The spectrograms are generated using the S11 data after applying a median filter. In all spectograms, the y-axis
represents time, and the x-axis represents frequency (1MHz-1000MHz). As highlighted in the Long Tap gesture figure, the
darker blob represents the touch-down event, while the lighter blob represents the touch-up event of the thumb and index
finger. Note: The spectrogram images are based on data from a single user, and spectrograms from different users may highlight
different frequency bands.

Figure 8: The CNN architecture for gesture recognition. In-
put is initially normalized, and multiple convolution layers
are then applied, each followed by a MaxPool layer; finally,
dropout and softmax are used.

6.2.1 Design. We construct these interfaces using a thin copper
sheet, which, as an excellent electrical conductor, offers a signifi-
cant impedance change when touched with the Z-Ring. Because
impedance is dependant on shape and size [64], we vary these as-
pects as we construct the interfaces to create distinct impedance
signatures across frequency.

Figure 9: Gesture recognition accuracy per participant for
one- and two-handed gestures for both user-dependent and
independent recognitionmodels. The gesture set for the user-
dependent model includes the left and right swipe, which is
not the case for the user-independent model. Due to logistics,
some participants did not participate in both one- and two-
handed gesture testing; hence, the figure shows some blank
areas.

We designed each button with a unique shape to ensure that
each has a distinct impedance profile. The 1D slider is built asym-
metrically along the direction of sliding to generate a continuously
varying impedance change, which helps determine where the fin-
ger is on the slider. Similarly, the geometry of a 2D trackpad is
asymmetric in two directions so that each trackpad location offers
a distinct impedance profile.
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(a) One-handed gestures with
user-dependent recognition
model.

(b) One-handed gestures with
user-independent recognition
model.

(c) Two-handed gestures with
user-dependent recognition
model.

(d) Two-handed gestures with
user-independent recognition
model.

Figure 10: Confusionmatrices (showing percentages) for one-
and two-handed gestures for user-dependent and indepen-
dent recognition models.

Figure 11: Passive tangible user interfaces designed for Z-
Ring.

6.2.2 Recognition. To recognize a button with Z-Ring, we employ
a support vector machine classifier (kernel=rbf). The classifier takes
the 51-point S11 measurement as a feature vector, predicts whether
any button is touched, and identifies which. The classifier is trained
on data collected while each button is touched and while no button
is touched (null).

To predict finger location on the 1D slider and 2D trackpad, we
use a random forest regressor (number of trees = 300, maximum
depth = 30) independently for each. The regressor receives S11 mea-
surements (51-point gesture vector length) from discrete locations

on the interface as training data and predicts a continuous output
(𝑥 for 1D and both 𝑥 and 𝑦 for 2D). Figure 12 shows the discrete
locations on the 1D and 2D interfaces. On the actual interface proto-
types, each discrete position was marked as a 1x1cm square with a
sharpie marker.; the user then placed their finger within this square
box so we could collect data. For the 1D slider, eight locations, each
2 cm apart, were specified. For the 2D trackpad, 12 (3 rows by 4
columns) different locations were marked, each 3 cm apart.

For all three user interfaces, the start and stop frequencies for the
S11 measurement sweep are set to 1MHz and 1GHz, respectively.

(a) Data collection setup for the 1D slider.

(b) Data collection setup for the 2D track-
pad.

Figure 12: Locations on the 1D and 2D interfaces (marked as
squares) that the user touches during data collection. Data
from the black squares train a regression model and from
the white squares validate the model.

6.2.3 Evaluation. We conducted a user study to assess how well
Z-Ring recognizes buttons. We created four buttons (Figure 11) and
investigated how effectively Z-Ring could differentiate among them
and between touching/not touching the buttons. We also evaluated
the continuous tracking accuracy for both 1D and 2D interfaces.
Table 1 shows study details.

Results for Buttons. We first determined if touch to any button
could be reliably identified. We created a binary classifier (SVM,
kernel=rbf), with one class using data from button touches and the
other as null gesture data from the gesture testing user study; the
null class included users engaging with their phones, desks, and
actions not involving button touches. We created two models, user-
dependent and user-independent. The former was trained on the
first four buttons and gesture study sessions and tested on the last
two. The latter used all six sessions from one user for testing and all
six sessions from remaining users for training, and we repeated this
process for all users. This binary classifier yielded 100% accuracy
for both user-dependent and independent models.

Next, we tested the system’s ability to differentiate buttons. We
used the first four sessions to train an SVM classifier (kernel=rbf)
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Study
Number of
Participants Number of samples per participant

Duration of
each sample

Button classification 14 4 buttons × 6 sessions × 5 repeats per button = 120 samples pp. 1 sec

1D slider tracking 17 8 locations × 6 sessions × 5 repeats per location = 240 samples pp. 1 sec

2D trackpad tracking 17 12 locations × 6 sessions × 5 repeats per location = 360 samples pp. 1 sec

Table 1: Passive user interfaces evaluation study details.

and the last two for testing. Each user had an individual model.
Average button identification accuracy across all participants was
91.8%, with highest accuracy at 99.3% (P4) and lowest at 82.79% (P19).
Figure 13 shows these results. Additionally, we discovered that user-
independent models for buttons cannot be easily generalized: as
signal travels through the user’s hand, each user’s unique anatomy
influences the frequency profile differently, producing different
spectral signatures for the same button.

Figure 13: Classification accuracy per participant for differ-
entiation among four buttons developed for Z-Ring.

Results for 1D Slider. We tested how accurately Z-Ring predicted
finger location on the 1D slider. We built a regression model, trained
it on data from slider positions ’4’, ’8’, ’12’, and ’16’ (Figure 12a),
and tested it on the rest. We built a user-dependent model using the
first four sessions for training and the last two for testing. Our user-
independent model used all six sessions for training and testing;
its training set consists of data from all participants except the one
being tested.

Both models had a mean absolute error of 3 cm and 4.4 cm,
respectively. The user-dependent model’s maximum and minimum
errors were 4 cm and 1.52 cm, respectively. The user-independent
model had a maximum and minimum error of 5.71 cm and 3.78 cm,
respectively. Both models have the highest error at the ’2’ position.
This is likely because the ’2’ point was located at the slider’s thinner
end, where only a portion of the user’s finger could make solid
contact with the copper; building a taller slider could overcome this
problem. Figure 14 shows the results.

Results for 2D Trackpad. We tested how accurately Z-Ring pre-
dicted finger location on the 2D trackpad. We built a regression
model, trained it on data from positions A, C, F, H, I, and K (Figure

(a) Mean error per participant.

(b) Mean error (cms) per test point.

Figure 14: The tracking error for the 1D slider for both user-
dependent and independent regression models.

12), and tested it on the rest. We built user-dependent and inde-
pendent models following the same procedure used for the 1D
slider.

We calculated the error as the mean absolute Euclidean error
for each position. The mean absolute error for the user-dependent
model was 3.2 cm and for the user-independent model was 4.14 cm.
The maximum and minimum errors for the user-dependent model
were 4.39 and 2.67 cm, respectively, and for the user-independent
model were 4.62 cm and 3.85 cm, respectively. Positions D and L on
the trackpad’s right edge showed higher errors than other points
for both models, probably because the edge protrudes, offering a
broader range of impedance variations than other locations. This
problem can be addressed by bringing the corner closer together
or gathering more data for spots in that vicinity. Figure 15 shows
these results.

For 1D sliders and 2D trackpads, the user-independent model
out-performed themodel for buttons. Although all are copper-based
topologies, the model for 1D and 2D interfaces needs to identify
changes only in relative impedance between different locations
on the interface, while the one for buttons must detect absolute
impedance changes, a more difficult task.
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(a) Mean error per participant.

(b) Mean error (cms) per test point.

Figure 15: The tracking error for the 2D continuous trackpad
for both user-dependent and independent regression models.
The error represented is the combined Euclidean distance
error for both X and Y directions.

Study results show that the slider and trackpad, though less ac-
curate than those on conventional electronic devices, open new op-
portunities for inexpensive, battery-free, and low-resolution input
devices. Within the limits of the given resolution, these interfaces
can support gestural input. For example, the sliders can support 1D
gestures like left and right swipes, and the trackpad can support 2D
gestures like cardinal-directional swipes or unistroke character in-
puts. The low-cost gestural input capability makes these interfaces
useful for ubiquitous, situated UIs.

6.3 Object Detection
We leverage Z-Ring’s ability to detect the impedance of external
surfaces the user’s hand touches to identify hand-held objects. Since
objects have a variety of shapes, sizes, volumes, and materials, each
has a distinctive impedance signature that can identify them. We ex-
amined six commonly used objects: a doorknob, a juice can, a water
bottle, a small storage box, a wrench, and tweezers. These objects
fall within categories such as small (tweezers) vs. large (wrench)
and hollow (bottle) vs. solid (doorknob) and require different hand
grips to use them. We focus on metallic objects since they produce
the most significant impedance shift; however, non-metallic items
can also offer impedance changes. Figure 16 shows the different
objects and their unique impedance signatures. By detecting objects
in hand, Z-Ring can provide a contextually aware input modality.

6.3.1 Recognition. We classify objects with an SVM classifier (ker-
nel=polynomial) using a 51-length S11 measurement as the feature
vector. Start and end frequencies were set to 1 MHz and 500 MHz,
respectively, since most dynamic changes are observed in this band.

6.3.2 Evaluation. In a study with 14 participants, we assessed the
Z-Ring’s object recognition accuracy. Participants were asked to
hold objects in the air with the hand wearing the ring. They grasped
the objects as they typically would when interacting with them.

Figure 16: Objects used in the object detection study and
their corresponding S11 curves. The curves were generated
by averaging multiple measurements of data collected from
a single user.

Each participant performed a total of 240 grabs, which equals 10
sessions × 6 objects × 4 repetitions for each object. Each grab lasted
2 seconds (about 60 S11 measurements). We increased the total
number of sessions for this study compared to the previous ones
due to the wide diversity of ways participants held the objects.

6.3.3 Results. We used the first eight user study sessions to train
the classifier model and the final two sessions to test it. We con-
structed a unique model for each participant. In addition to the data
gleaned from holding the objects, null gesture data from the gesture
recognition user study was also included; null gestures included
participants interacting with their phones or desk or performing
any action not in the gesture set. Including null gestures helped us
discover whether the classifier could differentiate between holding
and not holding objects and between holding objects from/not from
the test set.

The average object recognition accuracy was 94.5% across all
participants, with a maximum accuracy of 99% (P2, P16) and min-
imum of 87% (P20). The most frequently confused objects were
tweezers and the metal box, followed by the bottle and can. The
Null class had 100% accuracy for all participants. Figure 17 shows
these results.

The user-independentmodel was challenging to generalize across
users for objects. As was the case for buttons, the impedance profile
of the user’s hand affects the signals traveling to/from the object,
influencing its impedance response.

6.4 User Identification
Z-Ring provides a unique ability to identify and authenticate the
user wearing it. It identifies users based on their unique hand
impedance signatures due to their individual anatomical struc-
ture. Since Z-Ring is wearable, it can continuously identify and
authenticate the user and provide a secure input modality.

For this analysis, we repurposed data from the object detection
study because it reflects a more realistic environment where users
interact with and touch objects and surfaces. Since touching exter-
nal surfaces generates additional impedance changes, we wanted
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Figure 17: Object recognition confusion matrix (showing per-
centages) for all objects across all participants.

to determine if Z-Ring could still identify and authenticate users
given this added noise.

6.4.1 Recognition. Users are identified and authenticated with a
random forest classifier (number of trees = 50, maximum depth = 30).
S11 measurements were input to this model. Based on simulation
results, we utilized the frequency range of 1MHz to 400MHz. We
trimmed data from the object detection study (sweep from 1 MHz
to 500 MHz) for the smaller frequency range and repurposed it for
this investigation.

6.4.2 Evaluation. We consider all classes derived from the source
data to represent the user as a single class. We conducted two
analyses. For user identification, we train a model on each user’s
first eight sessions and test it on the remaining two sessions. For
user authentication, we train a binary classifier with all test users’
data as one class and all other users’ data as the other. The amount
of data is uneven between the two classes since it comes from
one participant vs. remaining participants; therefore, we uniformly
resample data from remaining individuals for comparable data
amounts.

6.4.3 Results. For closed-set user identification, the average ac-
curacy is 99%. Of the 14 participants, 12 had a perfect accuracy
of 100%. The remaining two had an accuracy of 89% and 97.4%.
For user authentication, the average classification accuracy across
participants is 98.3%, with 8 of 14 showing an accuracy of 100%. The
remaining 5 of 6 participants had an accuracy of over 90%, and the
last participant’s accuracy was 89%. We also re-ran this evaluation
with data from the one-handed gesture study and obtained similar
results.

7 DISCUSSION AND LIMITATIONS
Z-Ring offers multiple functions, like gesture input, object detection,
and interaction with passive user interfaces.

Our user studies explored each application domain separately;
the data for each application domain was collected and tested inde-
pendently. However, in a real-world scenario, multiple applications

may be required to operate simultaneously. For example, a user
might use a passive button to enable a device and then one-hand
gestures to control it. In this scenario, the system must be able to
mode switch between functions.

To understand the feasibility of this scenario, we trained a clas-
sifier (Random Forest, number of trees=50, max depth=30) to dis-
tinguish between the various applications by combining the data
collected from the user study. Figure 18 shows the confusion ma-
trix from this analysis. Results show that differentiating different
applications with high accuracy is possible. In this architecture,
a gating classifier could determine the application, and a second
classifier could identify the interaction; another approach to this
problem could involve training a single classifier to operate across
all application domains. We leave this for future work.

Figure 18: Confusion matrix differentiating among different
Z-Ring application domains.

For our tangible button investigation, we focused on altering
the button’s geometry to obtain a distinct impedance signature.
In addition to shapes and sizes, additional methods can vary or
control impedances, some of which are commonly used in RF cir-
cuit design. Cross-hatching, one such technique, carves out vast
sections of copper on a PCB in a lattice pattern to control trace
impedance. Attaching passive devices such as capacitors and in-
ductors to button surfaces can also alter impedances. In certain
chipless RFID designs [27, 60], resonant structures are constructed
around the main feed line to introduce peaks at specific frequencies,
contributing to generating a unique spectral signature. This could
be yet another possibility for enhancing the buttons’ frequency sig-
nature. Some chipless RFID systems [54, 79] use structural features
along the signal line at varying distances, from which the signal
bounces back and generates a temporal signature; such an approach
with a temporal and an impedance pattern might be helpful when
developing user-independent models for button recognition.

We explored copper surfaces and metallic objects for passive user
interfaces and object detection because their electrical conductivity
produces significant impedance changes. Nevertheless, nonmetallic
materials or dielectrically distinct objects, such as paper, cardboard,
and glass, can induce impedance change, although to a lesser degree.
Items with high water content, such as fruits and vegetables, can
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result in strong impedance changes. Certainly, our system could
sense electrically active objects such as those explored in EM-Sense
[38].

The current Z-Ring prototype employs a commercially available
VNA device that is too large for use as a wearable and, due to its
lack of wireless capabilities, is tethered to a laptop for data trans-
mission. This restricts the current prototype’s utility in real-world
scenarios or for extended periods. However, advancements in chip
manufacturing, materials, and circuit design offer paths towards
single-chip VNAs [12, 40, 55] that could substantially reduce the
prototype’s size. Moreover, we do not require the VNA’s more so-
phisticated measurements in our processing pipeline, opening the
door to simpler scalar network analyzer circuit designs, or even
focusing on impedance measurements at only the set of discrete
frequencies that demonstrate the greatest discrimination in our
models [6]. We will explore this aspect in the future.

Currently, most wearable devices, such as those used for fitness
tracking, feature a pair of electrodes that make contact with the skin
to measure stress levels through skin conductance measurements.
In the future, Z-Ring can repurpose these electrode pairs to enable
new interactive functionality.

8 CONCLUSION
We propose Z-Ring, a custom-designed ring prototype that lever-
ages a measurement of the finger’s bio-impedance to enable a wide
variety of interactive applications, while requiring only a single
point of instrumentation. Our evaluation shows that Z-Ring rec-
ognizes one-handed gestures at 93.1% and two-handed gestures at
92.6% accuracy and performs object detection at 94.5% accuracy
with six objects. We demonstrate that Z-Ring accurately detects
touch-down on a copper button with 100% accuracy and one’s fin-
ger position on a 1D and 2D slider, with an average MAE of <4.4
cm for the 1D slider and an average euclidean MAE of <4.1 cm for
the 2D slider. It also recognizes different copper shapes with an
accuracy of 91.8%. Z-Ring performs user identification with 99%
accuracy. Due to the richness of data afforded by the sensing modal-
ity and coupling technique described in this paper, we believe the
methods proposed in Z-Ring offer great potential for further HCI
explorations.
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Figure 19: The figure shows the biomedical hand model used
in the analysis for the Specific Absorption Rate (SAR) of the
human hand and the simulation results at various frequen-
cies (f). The leftmost figure shows the ring electrodes on the
hand model in yellow. The color bar shows normalized SAR
values.

A.2 S11 Variations Based on Hand Pose
We next focused on variations of S11 for one-handed gestures with
an emphasis on thumb-to-index finger interactions. Specifically,
we wanted to understand how the thumb and index finger contact
would affect S11 and how the location of the contact (e.g., at the tip
or middle of the index finger) influences S11. We looked at three
scenarios:

(1) When the index finger and thumb are not touching.
(2) When the thumb touches the tip of the index finger.
(3) When the thumb touches the middle of the index finger.
We built hand pose models for each scenario and simulated them

for a frequency sweep from 1 MHz to 1000 MHz. The resulting S11
plots are shown in Figure 20. The simulation results showed that
when the thumb and index finger touch, the S11 value decreases
significantly. As the thumb touches the index finger, it loads the
index finger antenna, coupling away the signal from the ring. Less
power is reflected through the signal electrode, causing S11 to
drop. This S11 change allows us to robustly differentiate between
a pinch and no pinch). When the thumb contacts the index finger
and swipes closer to the ring, the S11 value also decreases. As the
physical distance between the thumb and the ring’s contact point
decreases, additional signal shunts, leading to less reflected power
and a lower S11 value.

A.3 S11 Variations When Holding Objects
We explored how the S11 measurements change when a user holds
different objects. For this exploration, we choose four objects: a
sphere, a disk, a cube, and a cylinder. These objects are variety of
shapes and sizes, which will help with object diversity. Additionally,
each object requires a different held grip, further increasing varia-
tion. Although many materials affect impedance, metal produces
the most remarkable impedance changes; hence, we modeled these
items as solid aluminum shapes. We designed four hand models
holding each object, as shown in figure 21.

Figure 20: The figure shows three hand poses and the corre-
sponding S11 measurements for them.

While conducting the experiments, we found that at higher fre-
quencies, the dimensions of the objects become similar to the quar-
ter wavelength of the excitation signal (for example, at 500 MHz,
the quarter wavelength is approximately 15 cm, and at 1000 MHz,
it is approximately 7.5 cm). This similarity, along with the close
proximity of the objects to the ring, caused the objects to be directly
coupled to the ring over the air, affecting the impedance measure-
ments [89]. To avoid this issue, we limited the sweep frequency
from 1 MHz to 500 MHz. Figure 21 shows the S11 results from the
simulation, indicating subtle but distinguishable differences in the
S11 curves for different objects.

Figure 21: The figure shows four simulation models of hand
holding different objects and the corresponding S11 curves
for those scenarios
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(a) The figure shows a hand model interacting with three different
copper shapes and the corresponding S11 curves from the interac-
tion.

(b) The figure shows three positions (A, B, and C) on a copper square
where the handmade contact and the corresponding S11 curves from
the interaction.

Figure 22: Simulation results for hands interacting with a
variety of passive copper shapes.

Figure 23: The figure shows the S11 simulation results for
three hand models representing three different people and
carrying the same posture

A.4 S11 Variations When Touching External
Surfaces

We conducted two sets of experiments to better understand how
impedance is affected when touching passive surfaces. In the first,
we varied shape and size of copper sheets. In the second, we ex-
plored the effect of touching the same surface at different locations.
We used a thin sheet of copper (0.03 mm thick) as our surface
material for these experiments.

We tested three different shapes: square (3cm sides), triangle (3cm
sides), and circle (3cm diameter). The results of this experiment
are shown in Figure 22a. The S11 measurements for the copper-
based shapes in our experiments showed a more diversity at lower
frequencies and gradually tapered off toward the higher end of the
frequency sweep. We also conducted experiments with the same
shape (a square) but at different sizes (1 cm, 3 cm, 5 cm, and 7
cm sides), finding that the S11 measurements were more affected
by shape than the size. For example, when comparing the square
with 3 cm sides and the triangle with 3 cm sides, the maximum
difference in S11 values was 0.124 dB at 10 MHz. In contrast, when
comparing the square with 1cm sides and the square with 7cm sides,
the maximum difference in S11 values was 0.07 dB at 10 MHz. This
suggests that the shape of the surface has a greater impact on the
S11 measurements than the size of the surface, at least within the
range of sizes that we tested.

In the second experiment, we placed a finger on a 10-centimeter
square piece of copper at three different locations. The results of
this simulation are shown in figure 22b. The results confirm that
the S11 measurements change depending on touch point.

A.5 S11 Variations for Different Users
Since our sensing technique uses the hand as an antenna, the each
person’s unique anatomy influences the impedance measurement.
To understand how the S11 measurements might look for different
individuals, we built hand models with the same posture but differ-
ing anatomical characteristics. The differences were brought about
by varying characteristics values of biological components such as
bone, blood, fat, muscle, and skin. Table 2 lists these values. Figure
23 shows the simulation results. The results reveal that differences
in S11 readings between individuals are most significant between
1MHz to about 400MHz.

Hand Model #1 Hand Model #2 Hand Model #3
𝜖 𝜎 𝜖 𝜎 𝜖 𝜎

Blood 76.82 1.233 80.66 1.294 72.97 1.17
Bone 15.28 0.064 16.04 0.067 14.51 0.061
Fat 6.07 0.036 6.37 0.038 5.76 0.034

Muscle 65.97 0.708 69.26 0.743 62.67 0.673
Skin 69.45 0.507 72.92 0.532 65.97 0.481

𝜖 = Dielectric constant | 𝜎 = Electrical conductivity (S/m)

Table 2: The table lists the different dielectric constants and
electrical conductivity values for modeling the three differ-
ent hand types in user identification simulation experiments
[65, 68]
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