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TBscreen: A passive cough classifier for tuberculosis 
screening with a controlled dataset
Manuja Sharma1*, Videlis Nduba2, Lilian N. Njagi2, Wilfred Murithi2,  
Zipporah Mwongera2, Thomas R. Hawn3, Shwetak N. Patel1,4, David J. Horne3

Recent respiratory disease screening studies suggest promising performance of cough classifiers, but potential 
biases in model training and dataset quality preclude robust conclusions. To examine tuberculosis (TB) cough di-
agnostic features, we enrolled subjects with pulmonary TB (N = 149) and controls with other respiratory illnesses 
(N = 46) in Nairobi. We collected a dataset with 33,000 passive coughs and 1600 forced coughs in a controlled 
setting with similar demographics. We trained a ResNet18-based cough classifier using images of passive cough 
scalogram as input and obtained a fivefold cross-validation sensitivity of 0.70 (±0.11 SD). The smartphone-based 
model had better performance in subjects with higher bacterial load {receiver operating characteristic–area un-
der the curve (ROC-AUC): 0.87 [95% confidence interval (CI): 0.87 to 0.88], P < 0.001} or lung cavities [ROC-AUC: 
0.89 (95% CI: 0.88 to 0.89), P < 0.001]. Overall, our data suggest that passive cough features distinguish TB from 
non-TB subjects and are associated with bacterial burden and disease severity.

INTRODUCTION
Tuberculosis (TB), caused by inhalation of Mycobacterium tuberculosis 
(Mtb), is the second leading infectious disease–related cause of death 
after coronavirus disease 2019 (COVID-19) (1). After years of de-
cline, the estimated incidence of TB and TB-related deaths increased 
in 2021, numbering 10.6 million and 1.6 million people, respectively. 
The current gold standards for TB diagnosis include sputum culture 
or GeneXpert molecular tests (2–5). The availability of these tests is 
limited in low resource settings, particularly at peripheral health cen-
ters (6–8). Given its ease of implementation, the World Health Orga-
nization (WHO) recommends symptom screening (assessing for the 
presence of fever, cough, night sweats, or weight loss) to identify peo-
ple suspected of having TB. Unfortunately, the accuracy of symptom 
screening is suboptimal in both people with and without HIV (9, 10). 
The WHO target product profile (TPP) for TB triage tests includes a 
test that is non–sputum-based, rapid, low-cost, easy to use with mini-
mal infrastructure requirements, and accurate (>90% sensitive, >70% 
specific) (11, 12). Currently available TB screening tests do not meet 
these criteria (13–22).

The mechanism of cough production varies according to mucus 
properties, respiratory muscle strength, mechanosensitivity, chemo-
sensitivity of airways, and other factors resulting in diverse cough 
sounds (23–26). Although prolonged cough is one of the cardinal 
symptoms of pulmonary TB and one of the main mechanisms of 
spreading TB (27–30), current screening methods only include pa-
tient self-report to identify cough. The poor sensitivity (51%) of using 
cough to screen for TB may be due, in part, to lack of patient aware-
ness (9). Objective tools to estimate the number of coughs and its 
characteristics may be useful to improve the sensitivity of cough for 
TB screening (27, 31–36).

Cough audio frequency and its time domain features (37) have 
been studied as a biomarker for several pulmonary diseases, including 
asthma (38), pneumonia (39), and TB (40). COVID-19 cough diag-
nostic studies included machine learning approaches with classical 
modeling tools like logistic regression and support vector machine 
(41) as well as modern deep learning tools like convolutional neural 
networks (42) and transformers (43), with sensitivity ranging be-
tween 0.65 and 0.98 and specificity between 0.69 and 0.97 (41–44) in 
classifying COVID-19 versus non–COVID-19 coughs. For classifica-
tion of TB, previous work suggests that forced (voluntary) cough 
features can distinguish TB from other respiratory illnesses with 
moderate sensitivity and specificity (45, 46).

Despite encouraging performance metrics for several cough-based 
disease classifiers, cough feature–based screening models have not 
been reproducible or translatable (47, 48). Several potential reasons 
for these challenges and knowledge gaps have been highlighted (31, 42), 
including differences in environmental noise between cases and con-
trols as contributing to the classifier (41), small numbers of coughs 
and participants (45), dataset imbalances in participant characteris-
tics between cases and controls (49), and inconsistencies in training 
methods (43), which can lead to overestimated metrics (48). In addi-
tion, it is unclear if forced coughs, which have been used to train the 
cough classifiers (50–52), are a correct representation of natural (pas-
sive) coughs. Together, these issues highlight that it is important not 
only to focus on the performance metric but also to critically analyze 
the features/biases that affect the model training and evaluation.

To investigate cough characteristics as an accurate classifier of TB 
versus non-TB–related cough, we enrolled adults with cough due to 
pulmonary TB and non-TB–related etiologies in Nairobi, Kenya. We 
also investigated whether forced (voluntary) coughs could discrimi-
nate between TB disease states. We constructed a study design with 
minimal background noise and environmental variability between 
the control (non-TB) and disease groups (TB) to ensure that the mod-
el trains on differences in cough features rather than ambient noise. In 
addition, we used three recording devices with a demographically 
balanced cohort in a single setting to record a large number of passive 
(nonforced) coughs. We collected this dataset and trained a binary 
cough classifier, TBscreen, that provides an opportunity to examine 
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whether there are discriminatory features in the frequency content of 
TB coughs in comparison to other respiratory diseases and among 
various TB presentation.

RESULTS
To examine whether cough counts or features are TB-specific, we en-
rolled participants with cough seeking health care who were diagnosed 
with TB (N = 103) and without TB (N = 46; Table 1) in Nairobi, Kenya. 
Participants with TB were recruited from National Treatment Program 
clinics and were GeneXpert (MTB/RIF or MTB/RIF Ultra) positive, 
subsequently confirmed by acid-fast bacilli (AFB) culture. All study as-
sessments were performed before the initiation of anti-TB therapy. Par-
ticipants with non-TB–related cough were recruited from the same 
National Treatment Program clinics or other clinics and were all GeneX-
pert negative, had chest x-rays not compatible with TB, and were deter-
mined to have cough due to conditions other than TB (e.g., bacterial 
pneumonia, viral upper respiratory infection, and asthma) by study cli-
nicians. Both groups had similar demographic and clinical characteris-
tics, with many subjects self-reporting cough for longer than 2 weeks, 
fever, and night sweats (Table 1). The median age of persons with TB was 
36 years [interquartile range (IQR), 27 to 42] and of those with non-TB–
related cough was 40 years (IQR, 33 to 45). We extracted 43,200 passive 
(natural) coughs from these subjects (N = 149) by annotating continu-
ous 2-hour audio recordings from three devices used simultaneously 
(smartphone, low-cost boundary microphone, and high-cost condenser 
microphone) in a dedicated and relatively quiet room (Fig. 1A).

To examine the relationship of cough features between partici-
pants with TB and non-TB–related cough, we selected coughs with 
minimum background noise and audio distortion for analysis, bring-
ing the total clean passive cough count to 33,641. In addition, we col-
lected forced coughs from a subset of participants (42  TB and 8 
non-TB), giving us a total of 1619 coughs from all three recording 
devices (Fig. 1B). Among these, 1225 coughs with minimum back-
ground noise or audio clippings were selected for cough feature analy-
sis. The Nairobi dataset provides a unique opportunity to evaluate the 
feasibility of a cough-based screening tool by comparing disease (TB) 
and control (non-TB) cough features, recorded with low demograph-
ic variability and minimum ambient noise interference.

Cough counts and TB presentation
We first examined whether passive cough counts were associated with 
TB compared to those without TB-related cough. Median cough counts 
in participants with TB were similar to those without TB (64 versus 65, 
coughs, P = 0.64; Fig. 2A). We also evaluated whether cough count was 
associated with different TB presentations. Increased cough counts were 
associated with an increase in sputum Mtb bacterial load measured by 
GeneXpert [low (48 coughs) and high (73 coughs), P = 0.01; Fig. 2B] 
and sputum AFB smear [low (54 coughs) or high (76 coughs) sputum 
smear, P = 0.04; Fig. 2C]. Participants with lung cavities on chest radio-
graphs (76 coughs) had higher median cough counts compared to those 
without lung cavities (59 coughs; P = 0.04; Fig. 2D). The median number 
of coughs was similar in TB subjects with and without HIV infection (72 
versus 60 coughs, P = 0.50) and with and without history of smoking (69 
versus 62 coughs, P = 0.93) (Fig. 2, E and F). Using a generalized linear 
regression model to test associations between clinical variables and 
cough counts, we found that only semiquantitative grading of GeneX-
pert remained significant with an increase of 22.8 counts with each ad-
ditional GeneXpert grade (P = 0.02, additional data in table S1). The 

addition of other variables to this model did not significantly improve its 
performance. Overall, our data suggest that participants have similar 
cough counts regardless of cough etiology. Among participants with 
pulmonary TB, higher Xpert semiquantitative grade was associated with 
greater cough counts.

Binary cough classifier performance across different test 
sets, cough types, and devices
We next examined whether spectral features of cough audio distin-
guished TB from non-TB–related coughs. We developed TBscreen, a 
ResNet18 (53)–based TB versus non-TB classifier using RGB images 
of scalogram [time-frequency feature map generated using complex 
Morlet wavelet transform (54)] of passive cough sounds from all three 
recording devices. The model was trained and tested using fivefold 
cross-validation (Fig.  3, A to C) (55, 56) on dataset T1 (N  =  90: 
TB = 45, non-TB = 45; Table 1 and fig. S1A). Ninety subjects were 
randomly divided into five groups called folds, with each fold having 
a balanced number of unique subjects (subject-independent folds) 
and identical gender distribution between the two classes (TB and 
non-TB; fig. S1A). For fivefold cross-validation, the binary classifier 
was first trained and validated on four of the five folds and then evalu-
ated on the independent reserved fold, with the entire process repeated 
four times (Fig. 3A). On evaluation, the ResNet18 classifier, TBscreen 
(Fig. 3B), generated an average receiver operating characteristic–area 
under the curve (ROC-AUC) of 0.79 and an SD of 0.06 (sensitivity: 
0.70 ± 0.11, specificity: 0.71 ± 0.10) across five folds on the subject 
balanced dataset T1 (Table 2, ROC curve for T1 with SD across differ-
ent folds in Fig. 4A). The five test folds of T1 dataset were expanded to 
form T2 (N = 149: TB = 103, non-TB = 46; fig. S1B) by including all 
non-TB (n = 1) and TB (n = 58) data in the Nairobi dataset that was 
not used for balanced classifier training/evaluation. The model results 
on dataset T2 across five folds had an ROC-AUC score of 0.82 ± 0.03 
(sensitivity: 0.74 ± 0.02, specificity: 0.72 ± 0.10; Table 2; ROC curve in 
Fig. 4A). Additional aggregated statistics from five folds are summa-
rized in fig. S2 and table S3. Cross-validation results indicate that a 
scalogram-based model can differentiate between TB and non-TB 
passive coughs across all folds.

We next performed several secondary analyses. To understand 
whether the model trained on passive coughs can analyze forced 
coughs, we evaluated the classifier’s performance on a test set consist-
ing of only forced coughs (dataset T3, TB = 29, non-TB = 8; fig. S1C). 
The classifier’s sensitivity dropped to 0.34 ± 0.13, while specificity in-
creased to 0.81 ± 0.12 with an ROC-AUC score of 0.64 ± 0.05. This 
indicated that the forced cough model performed poorly and classi-
fied the majority of forced cough as non-TB (Table 2 and table S2).

We also examined whether there were audio recording device–
related performance differences. We used a subset of the cough data-
set by including coughs from only one recording device to train and 
evaluate the model performance on the T1 and T2 subsets. The 
smartphone-based model performed best with 0.83  ±  0.11 ROC-
AUC for T1 subset and 0.86 ± 0.03 for T2 subset (Tables 2 and 3 and 
tables S3 and S4). Because our dataset contains multiple coughs from 
the same participant, along with evaluating performance per cough, 
we evaluated the model for accuracy per participant. The model on an 
average correctly classified TB coughs per TB participant with an ac-
curacy of 0.68 [95% confidence interval (CI): 0.61 to 0.75, N = 103; 
table S8] and 0.78 (95% CI: 0.70 to 0.86, n = 45) for non-TB coughs 
per non-TB subject. Together, these data demonstrate that TBscreen 
can discriminate between TB and non-TB cough scalograms, but a 
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model trained on passive cough is not translatable to predict using 
forced cough scalograms. The model based on smartphone coughs 
had the best performance.

Association of cough features with TB clinical presentation
We extended the binary classification model (TB versus non-TB) to a 
multiclass classifier to examine whether cough features can differentiate 

Table  1. Demographic and clinical information of cohorts. 

Full cohort (T2) Training and evaluation 
cohort (T1)

Forced cough cohort (T3)

Category Subcategory TB Non-TB TB Non-TB TB Non-TB

Total subjects – – 103 46 45 45 29 8

Recruitment Pulmonary TB 
(cohort A)

103 (100%) – 45 (100%) – 29 (100%) –

Non-TB (failed 
cohort A)

– 36 (78%) – 35 (77%) – 2 (25%)

Non-TB (co-
hort C)

– 10 (22%) 10 (22%) 6 (75%)

Demographic Gender Male 75 (73%) 27 (57%) 27 (60%) 27 (60%) 21 (73%) 3 (38%)

Age group (18–40) 69 (67%) 23 (50%) 33 (73%) 23 (51%) 21 (72%) 5 (63%)

(40–60) 31 (30%) 18 (40%) 11 (24%) 18 (40%) 7 (24%) 2 (25%)

Median age 36 years 40 years 33 years 40 years 39 years 32 years

Clinical history HIV history Yes 12 (12%) 16 (35%) 5 (11%) 16 (36%) 0 3 (36%)

Smoking 
history

Yes 41 (40%) 5 (10%) 12 (27%) 5 (11%) 12 (41%) 1 (13%)

Coughing 
status (any 
duration)

Coughing 95 (92%) 41 (89%) 41 (91%) 41 (91%) 26 (90%) 6 (75%)

Coughing 
duration (>2 

weeks)

Yes 88 (85%) 35 (76%) 40 (89%) 35 (78%) 25 (86%) 6 (75%)

Hemoptysis Yes 29 (28%) 10 (22%) 12 (27%) 10 (22%) 7 (24%) 6 (75%)

Fever Yes 76 (74%) 23 (50%) 39 (87%) 23 (51%) 18 (62%) 2 (25%)

Weight loss Yes 89 (86%) 27 (59%) 38 (84%) 27 (60%) 25 (86%) 4 (50%)

Night sweats Yes 77 (75%) 17 (37%) 35 (78%) 17 (38%) 18 (62%) 3 (38%)

Comorbidity Diabetes 3 (3%) – 3 (6%) – 0 –

Asthma 1 (1%) – 1 (2%) – 0 –

Prior TB history 15 (15%) 11 (24%) 5 (11%) 11 (24%) 3 (10%) 2 (25%)

Chest x-ray 
findings

Cavitary 
disease

74 (72%) 0 32 (71%) 0 7 (24%) 0

Lung consoli-
dation

55 (53%) 2 (4%) 22 (49%) 2 (4%) 6 (21%) 1 (13%)

Abnormal lung 
quadrants

98 (95%) 4 (8%) 39 (87%) 4 (8%) 11 (34%) 1 (13%)

Normal 0 27 (57%) 0 27 (60%) 0 4 (50%)

TB 
presentations

GeneXpert Negative 0 0 0

Trace 6 (6%) 4 (9%) 4 (14%)

Very low 7 (7%) 4 (9%) 1 (3%)

Low 19 (18%) 8 (18%) 8 (38%)

Medium 40 (39%) 14 (31%) 8 (28%)

High 30 (29%) 15 (33%) 8 (28%)

Sputum smear Negative 3 (3%) 1 (2%) 0

Scanty 4 (4%) 2 (4%) 1 (3%)

1+ 24 (23%) 10 (22%) 4 (14%)

2+ 26 (25%) 7 (16%) 8 (28%)

3+ 39 (38%) 21 (47%) 11 (38%)
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between non-TB and various levels of clinical presentations of TB. The 
model included three distinct classes: non-TB (class 0), low TB burden 
presentation (class 1), and high TB burden presentation (class 2). The 
level of TB burden was based either on Mtb bacillary load estimated us-
ing GeneXpert or sputum smear result (low versus high bacterial load) 
or on the presence (high)/absence (low) of lung cavities. Therefore, three 
different models based on GeneXpert, sputum smear, and chest x-ray 
were trained and evaluated using fivefold cross-validation. Each fold had 
coughs from unique participants (subject independent), balanced num-
ber of participants, and equal gender distribution across three classes 
(fig.  S2). The accuracy score for a model based on GeneXpert was 
0.40 ± 0.09 (n = 90; per class subjects = 30), sputum smear 0.45 ± 0.05 
(n = 105; per class subjects = 35), and chest x-ray 0.44 ± 0.03 (n = 117; 
per class subjects = 39). All three models had the highest sensitivity for 
class 0 (GeneXpert: 0.58 ± 0.23, sputum smear: 0.58 ± 0.05, chest x-ray: 
0.62 ± 0.07) and lowest sensitivity for class 1 (GeneXpert: 0.21 ± 0.08, 
sputum smear: 0.33 ± 0.15, chest x-ray: 0.23 ± 0.08). In summary, the 
accuracy and sensitivity of all three multiclass models were suboptimal 
and had lowest performance in distinguishing between class 1 and class 
2 (further details are provided in table S9 and fig. S3). Of the three mod-
els, chest x-ray had the best sensitivity for all three classes.

Impact of cough audio frequency, sampling rate, devices, 
and audio frequency representations on binary 
model performance
We examined various characteristics of recorded audio, recording de-
vice, and feature representation that affects the model to select the 
criteria for best performance. First, we analyzed the impact of various 
cough audio characteristics on model performance by training and 

testing cough classifiers (dataset T1) using scalogram generated from 
different audio frequency ranges (10 Hz to 4 kHz, 4 to 8 kHz, and 
10 Hz to 16 kHz) and sampling rates. The model performed best in 
the frequency range of 10 Hz to 4 kHz (sensitivity: 0.70 ± 0.11, speci-
ficity: 0.71 ±  0.10) and had lower sensitivity and specificity in fre-
quency ranges above 4 kHz (0.64  ±  0.19, 0.68  ±  0.08, P  <  0.001; 
Table 3 and tables S5 and S10). Next, we analyzed audio features using 
different sampling rates (rate at which audio data are sampled by the 
device: 8 and 44.1 kHz) to verify its impact on the model perform
ance. We observe that the model performance degrades with a lower 
sampling rate (P < 0.001; Table 3 and tables S5 and S10). The binary 
cough model performs best in the lower frequency range of human 
ear (10 Hz to 4 kHz) and has better performance for higher audio 
sampling rate (44.1 kHz).

Second, we assessed the influence of recording devices by training 
and evaluating device-specific cough classification models. The cough 
model was trained and tested on each fold in T1 using data only from 
a specific recording device (T1 subset), scalogram features in frequen-
cy range of 10 Hz to 4 kHz, and audio sampling rate of 44.1 kHz. 
Overall, the model trained with smartphone data performed best with 
an average AUC-ROC score of 0.83 ± 0.1, sensitivity of 0.76 ± 0.12, 
and specificity of 0.74 ± 0.1, followed by boundary microphone (sen-
sitivity: 0.69 ± 0.09, specificity: 0.67 ± 0.20, P < 0.001), and then con-
denser microphone (sensitivity: 0.65 ± 0.19, specificity: 0.65 ± 0.13, 
P < 0.001) (Fig. 4B, Table 3, and table S10). On evaluating device-
specific models on complete T1 test set (including coughs from all the 
recording device), we found a drop in specificity across all device 
models. Results indicate that the smartphone-based model performs 
best in comparison to the other two recording devices, and a model 

Fig.  1. Dataset summary. (A) Study protocol for the audio data collection at Kenya Medical Research Institute (KEMRI), Nairobi and subsequent cough annotation at the 
University of Washington, Seattle. Subjects with tuberculosis (TB) and a control group of subjects having pulmonary symptoms other than TB (non-TB) had natural cough 
sounds (passive coughs) recorded using three recording devices in a quiet room for 2 hours. A subset of the subjects provided forced coughs (voluntary coughs) at the 
beginning of each audio recording. These recordings were annotated using Audacity software, and cough sounds with minimum background noise or distortion were 
selected. (B) The bar graphs represent the total passive and voluntary coughs (including all recording devices) in the Nairobi cough dataset. The lighter shade in the bar 
graphs indicates cough discarded because of environmental noise or audio distortion, and the darker shade represents the selected coughs per group. The adjacent 
boxplot represents distribution of total selected cough counts per subject including all three recording devices.
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trained on any one device has lower performance while evaluating 
cough data from multiple recording devices.

Last, we compared common audio classification model architec-
tures, VGGish (57) and ResNet18 models trained on mel-spectrogram 
(alternative audio frequency representations) as a baseline against the 
scalogram model. The mel-spectrogram feature set was able to classify 
TB/non-TB coughs (AUC-ROC score: 0.61 ± 0.06/0.62 ± 0.08, VG-
Gish/ResNet18) but had lower sensitivity (0.62 ±  0.19/0.66 ±  0.16, 
VGGish/ResNet18) and specificity (0.61 ± 0.09/0.58 ± 0.10, VGGish/
ResNet18) in comparison to TBscreen (AUC-ROC score: 0.79 + 0.06, 
P < 0.001) built using scalogram features (Table 3, Fig. 4C, fig. S2C, 
and table S6). Together, these subgroup analyses demonstrated that 
scalogram cough features generated in a frequency range of 10 Hz to 
4 kHz from cough audio recorded using smartphone at a sampling 
rate of 44.1 kHz had the best performance in differentiating between 
TB and non-TB coughs.

Performance bias of smartphone-based binary cough model
We further examined the best-performing model (smartphone cough-
based model, frequency range: 10 HZ to 4 kHz, and audio sampling 
rate: 44.1 kHz) within different demographic/clinical subcategories like 
gender, age, smoking status, HIV infection, and different presentations 

of TB subjects (Table 4 and table S11) using T1 subset (only coughs re-
corded with smartphone). The model demonstrated better perfor-
mance with male coughs (ROC-AUC: 0.87 ± 0.15) over female coughs 
(ROC-AUC: 0.78 ± 0.12, P < 0.001). The model performed better for 
older age group (ROC-AUC in 18 to 40: 0.80  ±  0.15, 40 to 60: 
0.87 ± 0.11, P = 0.01). The model performance was also better for peo-
ple living with HIV compared to subjects without HIV infection 
(P < 0.001). Subjects with a smoking history had higher ROC-AUC 
score (0.87 ± 0.17, P < 0.001) over subjects with no smoking history 
(0.80 ± 0.10). The ROC-AUC score of the model in differentiating be-
tween TB and non-TB coughs was higher for subjects with TB who had 
a high GeneXpert semiquantitative grade (0.86 ± 0.12, P < 0.001) ver-
sus those with TB who had low GeneXpert grades (0.69 ± 0.12). The 
model performed better in subjects with cavitary TB (0.86  ±  0.12, 
P < 0.001) versus no lung cavity on chest x-ray (0.71 ± 0.05). Overall, 
the smartphone-based cough model had better performance with male 
subjects and subjects having a higher GeneXpert semiquantitative 
grade or a cavitary chest x-ray and was unaffected by age.

DISCUSSION
We investigated whether cough characteristics discriminate between 
TB and non-TB–related coughs. Although cough counts did not 
discriminate between cough related to TB versus other conditions, 
cough scalogram characteristics were associated with identification of 
coughs due to pulmonary TB. Our initial ResNet18 classifier model 
distinguished TB versus non-TB coughs with ROC curve value 
0.79 ± 0.06 using scalogram features (variation of signal energy over 
time and frequency) generated in the frequency range of 10 to 4 kHz 
and sampling rate of 44.1 kHz using a balanced dataset. We found that 
the best-performing model was based on recordings from a Pixel 
smartphone (ROC curve 0.83 ± 0.10). Further improvements in ac-
curacy of the smartphone-based model were noted in detecting par-
ticipants with a high GeneXpert semiquantitative grade, who are 
likely most infectious, compared to those with non-TB–related cough 
(ROC-AUC: 0.86, 95% CI: 0.87 to 0.88). This model achieves a sensi-
tivity of 82% (±21%) at 70% specificity, a level that approaches the 
WHO TPP for a TB triage test of 90% sensitivity and 70% specificity.

While several recent studies have shown similar or greater accu-
racy in TB cough classifiers (45, 46, 52), we believe that several 
strengths of the present study elevate the validity of our findings and 
support the potential of cough classifiers as TB triage tests. In a re-
cently published longitudinal study by Huddart et al. (36) comparing 
cough counts between TB and non-TB subjects having prolonged 
coughs, there was a difference in median hourly cough counts of TB 
versus non-TB subjects. At enrollment, they observed a median of 
eight coughs per hour for persons with microbiologically confirmed 
TB compared to five coughs per hour for persons with coughs due to 
other etiologies. In our study, we found a median of 64 and 65 coughs 
over a 2-hour recording in persons with TB and persons with non-TB 
etiologies of cough, respectively. The differences in our results could 
be due to differences in patient populations, TB severity, differences 
in the etiologies of non-TB–related coughs, clinic versus nonclinic 
cough measurements, and the limitations of cough counters in iden-
tifying user-specific coughs. This can lead to inflated data for partici-
pants living in multiperson households (neighborhoods) with more 
than one person coughing. Three other studies of cough feature–
based TB detection recorded forced (voluntary) coughs. In our study, 
we found that forced coughs performed poorly when applied to a 

Fig. 2. Summary of cough counts in a 2-hour interval. Box plots in (A) represent 
cough distribution of TB versus non-TB subjects. Mean number of coughs in each 
box plot is depicted by a triangle. Similarly, cough distribution for various subcate-
gories of TB subjects is summarized with (B) low and high polymerase chain reac-
tion (PCR) test result using GeneXpert, (C) low or high sputum smear score, (D) with 
or without cavity on chest x-ray findings, (E) with or without HIV infections, and 
(F) with or without a history of smoking. In each graph, the total number of subjects 
in the category is shown by N. Data for subjects with missing subcategory informa-
tion are not shown. *P < 0.05 with univariate testing by Mann-Whitney U statistical 
test using “greater” alternative.
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model trained on passive coughs, highlighting differences in these 
cough types. Two of the prior studies enrolled healthy volunteers as 
the control group (45, 52), which would not be reflective of the ex-
pected clinical role (persons suspected of having pulmonary TB) for 
cough screening algorithms. Other important limitations to the prior 
studies include gender imbalance between classes and the presence of 
significant ambient noise in the dataset (46). Additional strengths of 
our study include rigorous evaluations to exclude TB in non-TB–related 
controls, cough recordings obtained before TB treatment initiation, 
strict recording conditions and standardized lengths of recordings 
(2 hours), and training/evaluation using a gender-balanced dataset (T1).

We assessed both scalogram and mel-spectrogram cough represen-
tation methods to assess optimal frequency timescale cough representa-
tion. Scalograms generated using continuous wavelet transform provide 
better frequency versus time resolution compared to other frequency 
domain transformations (58–60). This approach has been used in the 
analysis of other one-dimensional (1D) data like electroencephalogram 
(61), DNA analysis (62), and lung auscultation (63). The resolution 
of scalograms comes at the cost of increased feature size, especially for 

audio data, limiting its applications. To reduce the size of generated sca-
lograms, we used colored (RGB) images as an encoding for scalograms 
to train TBscreen (64, 65), making it easier to use medium-sized deep 
learning models for training. We could then leverage pretrained image 
classification models reducing the need for a very large training dataset. 
Traditional cough-based disease classifiers have been developed using 
mel-spectrogram (41, 42, 45, 46) by transforming short-time Fourier 
transform (STFT) spectrograms with mel-filter banks. These filter banks 
mimic frequency sensitivity of a human ear as well reduces dimension of 
an STFT-based spectrogram (66). It is difficult for clinicians to screen 
patients by listening to their cough sounds, and mel-spectrograms 
(based on response to human ears) are a less accurate approach. Our 
results confirm that a model using scalogram features performs better 
than mel-spectrogram features in TB disease classification. In addition, 
impact of various factors (demographic, recording devices, cough fea-
tures, and TB presentation) provided rigorous performance analysis of 
the TB cough model.

Models trained using different recording devices show a varied re-
sponse, with the smartphone-based model having the best performance. 

Fig.  3. Binary TB/non-TB cough classifier. (A) A balanced subset of the Nairobi dataset is used for fivefold nested cross-validation. (B) Resnet18 model architecture and 
feature dimension size used to train/test the cough classifier. (C) Preprocessing of cough sound into an RGB scalogram image, which is used as input features to the 
Resnet18 model.
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The condenser microphone was overly sensitive, resulting in the capture 
of more ambient sound and a smaller training dataset due to audio dis-
tortion. The boundary microphone is a low-cost microphone that might 
not have captured the cough sound adequately, although its built-in al-
gorithm to reduce ambient sound could have positively affected the per-
formance. Audio recording devices with dynamic gain are ideal for 
recording coughs for analysis. Narrowing the frequency of interest 
would help mitigate issues of designing a universal cough model as it can 
enable development of tools that are sensitive to audio frequencies only 
in the range of interest.

Our study has several limitations. We found that the scalogram 
model performed better with males and those with a higher bacillary 
load and the presence of cavities. Overall, number of female subjects 
and coughs from female participants [n = 36, coughs = 6559 (31%)] 
were lower than male subjects in the dataset [n = 54, coughs = 14,574 
(69%)], which could cause the difference in performance for the two 
genders. In addition, the improved performance in subjects with a 
higher bacterial load or chest cavity could be attributed to more disease 
signal in coughs of subjects with advanced TB. The overall study results 
are limited in terms of number of subjects and needs evaluation with a 
larger independent dataset. The cough count analysis was limited by the 
observation time, and robust monitoring for longer duration may de-
tect differences by cough etiology in cough counts. Increasing the train-
ing data can possibly improve the present sensitivity of TBscreen, which 
is currently lower than the WHO’s TPP (sensitivity: 90%, specificity: 
70%) for a TB screening tool (9). Our study did not include subjects 
across the entire spectrum of clinical presentation. For example, some 
individuals are treated for TB based on high clinician suspicion despite 
negative diagnostic tests. We did not include these subjects to avoid re-
sults based on subjective clinician decisions, which could have led to 

misclassification of cough etiology. Future studies are needed to address 
patients with a clinical diagnosis of TB. In addition, TBscreen was 
trained on a controlled dataset and is not optimized for time efficiency 
or robustness to any ambient noise essential for real-world deployment.

The Nairobi cough dataset provides a unique access to passive 
coughs of both disease (TB) and control group (non-TB) with mini-
mal ambient interference and recorded in an identical environmental 
setup. Our findings support the feasibility of using a widely available 
recording device (smartphones) for a point-of-care cough-based TB 
screen and should be validated in different settings and patient popu-
lations. The smartphone-based model performed best in identifying 
participants with high GeneXpert grades or cavitary findings on lung 
disease, supporting a role for cough detection in identifying persons 
with pulmonary TB who are most infectious. Potential roles for this 
test include TB screening in peripheral levels of the health care system 
and as a public health intervention to screen congregate settings for 
interruption of transmission events.

METHODS
Nairobi dataset
Audio cough recordings of participants with pulmonary TB and control 
participants having non-TB–related cough (non-TB) were collected at 
the Centre for Respiratory Diseases Research (CRDR), Kenya Medical 
Research Institute (KEMRI), Nairobi, Kenya (Fig. 1). We recruited adult 
outpatients with TB from National Treatment Program clinics before 
starting anti-TB treatment. Pulmonary TB was diagnosed on the basis 
of a spontaneous sputum sample that was GeneXpert (MTB/RIF or 
Ultra) positive, subsequently confirmed by AFB culture. At the CRDR, 
sputum samples were decontaminated using N-acetyl-​l-cysteine and 

Table 2. Performance across datasets. Average ROC-AUC score, sensitivity, and specificity with SD across five folds using different training data (coughs from 
all devices versus coughs from smartphone) and test sets (T1, T2, and T3). Two variations of the classifier are tested on three different test sets: T1: subject 
balanced passive cough dataset (for gender and number of subjects) and used for fivefold training and testing of the classifier; T2: expanded T1 consisting of all 
non-TB subjects and TB cough data not included for training the fivefold classifier; T3: a voluntary cough dataset consisting of coughs from TB and non-TB 
subjects. Table S2 represents aggregated result from multiple folds using bootstrapping.

Model training 
parameters

Test set ROC-AUC score 
(average of 
5 folds ± SD 
across folds)

Sensitivity 
(average of 
5 folds ± SD 
across folds, 

threshold = 0.5)

Specificity 
(average of 
5 folds ± SD 
across folds, 

threshold = 0.5)

Sensitivity at 
70% specificity 

(average of 
5 folds ± SD 
across folds)

Combined ROC-
AUC score of 5 
folds (average 

after combining 
results from 
all five folds 

(DeLong’s CI)

TBscreen Device: All Scalo-
gram: 10 Hz to 

4 kHz Sampling 
rate: 44.1 kHz

T1: Subject 
balanced CV

0.79 ± 0.06 0.70 ± 0.11 0.71 ± 0.10 0.72 ± 0.10 0.80 (0.79–0.80)

T2: Expanded T1, 
unbalanced set

0.82 ± 0.03 0.74 ± 0.02 0.72 ± 0.10 0.76 ± 0.04 0.80 (0.79–0.80)

T3: Voluntary 
cough, unbal-

anced set

0.64 ± 0.05 0.34 ± 0.13 0.81 ± 0.12 0.47 ± 0.06 0.64 (0.62–0.66)

TBscreen trained/
evaluated on 
coughs from 
smartphone

Device: Smart-
phone Scalogram: 

10 Hz to 4 kHz 
Sampling rate: 

44.1 kHz

T1 subset: Sub-
ject balanced CV

0.83 ± 0.11 0.76 ± 0.12 0.74 ± 0.10 0.76 ± 0.20 0.85 (0.84–0.85)

T2 subset: 
Expanded T1, 

unbalanced set

0.86 ± 0.03 0.80 ± 0.03 0.74 ± 0.10 0.83 ± 0.05 0.86 (0.85–0.87)

T3 subset: 
Voluntary cough, 
unbalanced set

0.61 ± 0.14 0.16 ± 0.11 0.95 ± 0.05 0.51 ± 0.18 0.66 (0.62–0.70)
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sodium hydroxide and examined using fluorescence microscopy. If one 
or more AFB per equivalent of 100 immersion fields was observed, the 
slide was considered positive and graded on a scale of scanty, 1+, 2+, or 
3+. After resuspension with phosphate buffer, equal sample volumes 
were used to perform mycobacterial culture and GeneXpert MTB/RIF 
or Ultra (Cepheid, Sunnyvale, CA). The GeneXpert assay assigns a 

semiquantitative category to positive tests for Mtb based on cycle thresh-
old (Ct) values. GeneXpert MTB/RIF categories are high, medium, low, 
and very low; Ultra has an additional level, trace positive, the lowest 
level of detection. GeneXpert Ct values were assigned using the smallest 
Ct value from any of the probes targeting the rpoB gene; participants 
with Xpert Ultra trace-positive results (for whom rpoB probe Ct values 

Fig.  4. Passive binary cough ROC plot. (A) ROC curve with SD across five folds for model trained using coughs from all devices and evaluated on T1: subject balanced 
passive cough dataset (equal gender distribution and number of subjects) and used for fivefold training and testing of the classifier; T2: expanded T1 consisting of all 
non-TB subjects and TB cough data not included for training the fivefold classifier; T3: a voluntary cough dataset consisting of coughs from TB and non-TB subjects. ROC 
curve with SD for the second model trained on and validated on coughs from smartphone is also represented (B) ROC curve with SD across five folds for model trained 
using coughs from smartphone and evaluated on T1, T2, and T3. (C) Comparison of ROC curve of the binary cough classifier trained using scalogram images of cough and 
baseline cough models trained on mel-spectrogram features. Figure S2 represents aggregated results from multiple folds using bootstrapping.
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were 0) were assigned a Ct value of 35 (the greatest Ct value for partici-
pants with an Xpert grade above trace was 30). Mycobacterial culture 
was performed using the MGIT Manual Mycobacterial Growth System 
(Becton-Dickinson, Franklin Lakes, NJ). Isolates were identified as Mtb 
using the Capilia TB Test Kit (TAUNS, Numazu, Japan). Sputum evalu-
ations were performed on fresh samples. Per Kenya policy, patients with 
TB who were not known to be HIV positive underwent HIV testing. 
Participants with non-TB–related cough were adult outpatients recruited 
from the same National Treatment Program clinics or other chest clin-
ics and were GeneXpert negative, had chest x-rays not typical for TB, 
and were determined to have cough due to conditions other than TB by 
study clinicians. Chest x-rays were evaluated for cavitary disease by a 
study investigator (D.J.H.). Various subcategories of semiquantitative 

GeneXpert and Sputum smear results were grouped into two categories—
high and low. For GeneXpert, low category included trace, very low, and 
low results, and high category included medium and high semiquanti-
tative readings. Similarly for sputum smear result, negative, scanty, and 
1+ were classified as low and 2+ and 3+ results were categorized as high.

After obtaining informed consent (in English or Swahili), each par-
ticipant sat in a quiet room for 2 hours with three recording devices re-
cording continuous audio. The audio recording room was selected to be 
in a quieter location of the hospital grounds to minimize background 
noise interference, and participants were advised to minimize any phone 
conversation while the microphones were recording. The audio record-
ing was annotated by humans (Supplementary Text and fig. S1) to mark 
coughs in the audio file. Three audio devices—a smartphone (Google 

Table 3. Various cough features and model performance. Average ROC-AUC score, sensitivity, and specificity with SD across five folds using different training 
inputs and performance evaluated on T1 dataset. Table S5 represents aggregated result from multiple folds using bootstrapping.

Model training 
parameters

Test set ROC-AUC score 
(average of 
5 folds ± SD 
across folds)

Sensitivity (aver-
age of 5 folds ± 
SD across folds, 

threshold  =  0.5)

Specificity 
(average of 
5 folds ± SD 
across folds, 

threshold = 0.5)

Sensitivity at 
70% specificity 

(average of 
5 folds ± SD 
across folds)

Combined ROC-
AUC score of 5 
folds (average 
after combin-

ing results 
from all 5 folds 

(DeLong’s CI)

Frequency range 
of scalogram 
Device: All 
Sampling rate: 
44.1 kHz

10 Hz to 4 kHz T1: Subject 
balanced CV

0.79 ± 0.06 0.70 ± 0.11 0.71 ± 0.10 0.72 ± 0.10 0.80 (0.79–0.80)

4–8 kHz T1: Subject 
balanced CV

0.75 ± 0.09 0.64 ± 0.19 0.68 ± 0.08 0.64 ± 0.14 0.75 (0.75–0.76)

10–16 kHz T1: Subject 
balanced CV

0.79 ± 0.07 0.72 ± 0.07 0.69 ± 0.10 0.71 ± 0.12 0.80 (0.79–0.80)

Sampling rate 
Device: All

8 kHz Scalogram: 
10 Hz to 4 kHz

T1: Subject 
balanced CV

0.65 ± 0.09 0.64 ± 0.18 0.57 ± 0.1 0.51 ± 0.14 0.63 (0.62–0.63)

44.1 kHz scalo-
gram: 10 Hz to 

4 kHz

T1: Subject 
balanced CV

0.79 ± 0.06 0.70 ± 0.11 0.71 ± 0.10 0.72 ± 0.10 0.80 (0.79–0.80)

Recording device 
Scalogram: 10 Hz 
to 4 kHz Sampling 
rate: 44.1 kHz

Smartphone T1 subset: 
Subject balanced 
CV (smartphone 

coughs)

0.83 ± 0.11 0.76 ± 0.12 0.74 ± 0.10 0.76 ± 0.20 0.85 (0.84–0.85)

T1: Subject 
balanced CV

0.79 ± 0.03 0.76 ± 0.05 0.62 ± 0.04 0.72 ± 0.06 0.80 (0.79–0.80)

Boundary micro-
phone

T1 subset: 
Subject balanced 

CV (boundary 
microphone 

coughs)

0.77 ± 0.10 0.69 ± 0.09 0.67 ± 0.20 0.69 ± 0.13 0.78 (0.77–0.78)

T1: Subject 
balanced CV

0.77 ± 0.09 0.72 ± 0.12 0.66 ± 0.14 0.68 ± 0.14 0.79 (0.79–0.80)

Condenser 
microphone

T1 subset: 
Subject balanced 

CV (condenser 
microphone 

coughs)

0.73 ± 0.14 0.65 ± 0.19 0.65 ± 0.13 0.62 ± 0.22 0.73 (0.72–0.74)

T1: Subject 
balanced CV

0.69 ± 0.17 0.67 ± 0.18 0.53 ± 0.18 0.56 ± 0.25 0.69 (0.68–0.69)

Alternative 
frequency 
representation 
Mel-spectrogram 
Device: All 
Baseline model

Model: VGGish 
Sampling rate: 

16 kHz

T1: Subject 
balanced CV

0.66 ± 0.07 0.62 ± 0.19 0.61 ± 0.09 0.53 ± 0.12 0.63 (0.63–0.64)

Model: ResNet18 
Sampling rate: 

44.1 kHz

T1: Subject 
balanced CV

0.67 ± 0.11 0.66 ± 0.16 0.58 ± 0.10 0.55 ± 0.16 0.65 (0.65–0.66)
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Pixel 2), a low-cost boundary microphone (Codec), and a high-end con-
denser microphone (Yeti)—were used to record the audio at a sampling 
frequency of 44.1 kHz, 16 bit, and were placed on a table in front of the 
subject at a fixed distance. The latter two devices were plugged into a 
laptop computer for recording. Forced coughs from participants, where 
individuals were prompted to produce 10 coughs, were also recorded for 
a subset of participants. Raw audio data were uploaded to the Amazon 
Cloud Services S3 platform by the data collection team in Kenya. Along 
with audio recordings, we collected demographic (age, gender, smoking 
history, pulmonary health history, and HIV history) and clinical data 
(sputum analysis, chest x-ray, and blood samples) (Table 1). Study data 
were collected and managed using REDCap electronic data capture tools 
hosted at the University of Washington (67). The study was approved by 
the University of Washington (STUDY00009209) and KEMRI (KEMRI/
SERU/CRDR/048/3988) Institutional Review Boards.

Audio files were annotated by human annotators at the University of 
Washington using Audacity software. Coughs with any background 
noise such as fan, door, speech, or any other respiratory sounds like a 
sneeze or clearing of nose/throat were discarded. In addition, cough 

audio files with any waveform distortion were removed from the data-
set using amplitude-based thresholding (Supplementary Text). Each 
cough sound was processed to have a fixed length of 1 s, and record-
ings greater than a second were divided into multiple audio files. We 
fixed the audio length to 1 s similar to common audio classification 
models (57, 68, 69), which trade off between capturing majority of 
complete cough sounds versus enabling the future application to pro-
cess audio in real time (57). Files with a length of less than 1 s were 
centered and padded with zeroes to make them 1 s long. Audio seg-
ments less than 0.1 s were discarded.

The passive cough dataset consists of 43,200 coughs, each 1 s long, 
from 149 subjects. After rejecting 4390 TB and 5169 non-TB coughs 
because of background noise and clipping, the total number of 
passive coughs in the Nairobi Cough dataset was 33,641 (TB: 23,191 
and non-TB: 10,450) from all three recording devices and 149 subjects 
(TB: 103 and non-TB: 46). The forced cough set was reduced from 
1619 to 1225 coughs [TB: 991 (42 subjects), non-TB: 234 (8 sub-
jects)] after discarding 394 coughs because of clipping or back-
ground noise (Fig. 1B).

Table 4. Smartphone classification and performance bias analysis of binary cough model. The classification results are represented for different 
demographic, clinical, and TB presentations in T1 dataset. Table S6 represents aggregated result from multiple folds using bootstrapping.

Category Subcategory ROC-AUC score 
(average of 
5 folds ± SD 
across folds)

Sensitivity 
(average of 
5 folds ± SD 
across folds, 

threshold = 0.5)

Specificity 
(average of 
5 folds ± SD 
across folds, 

threshold = 0.5)

Sensitivity 
@70% speci-

ficity (average 
of 5 folds ± SD 

across folds)

Combined ROC-
AUC score of 5 
folds (average 
after combin-

ing results 
from all 5 folds 

(DeLong’s CI)

Overall model 
device: 
Smartphone 
Scalogram: 10 Hz 
to 4 kHz Sampling 
rate: 44.1 kHz

All inclusive – 0.83 ± 0.11 0.76 ± 0.12 0.74 ± 0.10 0.76 ± 0.20 0.85 (0.84–0.85)

Demographic bias Gender Male 0.87 ± 0.15 0.85 ± 0.14 0.72 ± 0.13 0.84 ± 0.25 0.89 (0.89–0.90)

Female 0.78 ± 0.12 0.56 ± 0.13 0.81 ± 0.14 0.70 ± 0.23 0.76 (0.74–0.78)

Age group (18,40) 0.80 ± 0.15 0.74 ± 0.16 0.71 ± 0.14 0.70 ± 0.25 0.85 (0.84–0.86)

(40,60) 0.87 ± 0.11 0.81 ± 0.12 0.78 ± 0.16 0.86 ± 0.16 0.83 (0.81–0.84)

Clinical bias HIV history No HIV history 0.82 ± 0.10 0.74 ± 0.13 0.72 ± 0.13 0.77 ± 0.17 0.84 (0.83–0.85)

With HIV history 0.92 ± 0.08 0.89 ± 0.07 0.81 ± 0.17 0.90 ± 0.10 0.91 (0.90–0.93)

Smoking history No smoking 
history

0.80 ± 0.10 0.71 ± 0.11 0.73 ± 0.10 0.72 ± 0.18 0.81 (0.80–0.83)

With smoking 
history

0.87 ± 0.17 0.83 ± 0.15 0.81 ± 0.18 0.83 ± 0.27 0.90 (0.89–0.91)

TB presentations GeneXpert Low bacterial 
load

0.69 ± 0.12 0.52 ± 0.22 0.74 ± 0.1 0.58 ± 0.24 0.74 (0.73–0.76)

High bacterial 
load

0.86 ± 0.12 0.82 ± 0.13 0.74 ± 0.1 0.82 ± 0.21 0.87 (0.87–0.88)

Sputum smear Low bacterial 
load

0.84 ± 0.15 0.76 ± 0.21 0.74 ± 0.1 0.78 ± 0.23 0.85 (0.83–0.87)

High bacterial 
load

0.85 ± 0.11 0.79 ± 0.12 0.74 ± 0.1 0.80 ± 0.21 0.86 (0.85–0.87)

Lung cavity No cavity 0.71 ± 0.05 0.52 ± 0.1 0.74 ± 0.1 0.56 ± 0.13 0.71 (0.69–0.72)

With cavity 0.86 ± 0.12 0.83 ± 0.12 0.74 ± 0.1 0.83 ± 0.21 0.89 (0.88–0.89)
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Dataset—T1
We built a balanced subset having an equal number of TB/non-TB 
subjects (fig. S1A) to train and evaluate the binary classifier because 
the number of subjects in the non-TB group is lower than the TB group 
(Table 1). The balanced dataset consists of 45 non-TB subjects (1 sub-
ject was removed due to lack of sex information) and 45 TB subjects 
randomly sampled from the TB dataset. The sex distribution of TB 
(male: 27, female: 18) and non-TB (male: 27, female: 18) subjects was 
identical. We limited the maximum number of coughs per subject to 
225 (the average number of coughs per subject in the dataset) to avoid 
signatures from any one subject dominating in training or evaluation. 
A dataset with 21,133 coughs (10,728 TB and 10,346 non-TB) was trained 
and tested with fivefold nested cross-validation (fig. S2A).

Dataset—T2
T2 is the superset of T1 dataset and includes all non-TB (n = 1) and 
TB (n = 58) subjects not part of T1. It provides a fivefold unbalanced 
dataset (fig. S2B) with 33,641 passive coughs (TB: 23,191 and non-
TB:10,450). Distribution of coughs based on the recording device, 
age, HIV infection, and smoking status is summarized in fig. S2B. This 
dataset is used as a test dataset, giving us performance metric for five 
folds using models trained on T1. Test folds are independent of train-
ing sets, for example, a model trained/validated on folds 2 to 5 of the 
T1 dataset are tested using fold 1 of T2.

Dataset—T3
Forced coughs were used to evaluate the passive cough model trained 
using T1. A test set T3 was built for each fold such that coughs (pas-
sive or forced) from the same subject were not present in the training 
and the testing set simultaneously (fig. S2C and Table 1).

Dataset—multiclass
Three subdatasets were built using passive coughs from the Nairobi 
dataset, each with three classes: non-TB (class 0), low TB pre-
sentation (class 1), and high TB presentation (class 2). Classes 1 
and 2 were assigned by estimated Mtb bacillary burden (low or 
high for class 1 or 2, respectively) based on GeneXpert semiquan-
titative grade (class 1: trace, very low, and low; class 2: medium and 
high), sputum smear result (class 1: negative/scanty/1+; class 
2: 2+/3+), or chest x-ray findings of cavitary disease absent (class 1) 
or present (class 2). Therefore, three different models based on 
GeneXpert (11,360 coughs, 83 subjects), sputum smear (14,578 
coughs, 93 subjects), and chest x-ray (15,605, 102 subjects) were 
trained and evaluated using fivefold cross-validation. Each data-
set is divided into five folds such that all the classes have equal 
number of subjects and similar gender distribution (fig. S5).

Cough features
Time and frequency domain features were extracted from cough 
by converting the 1D time-series audio data to frequency domain 
using continuous wavelet transformation (54, 58). The transformed 
data represented as images of cough scalograms were used to train 
and evaluate TBscreen classifier. Baseline models were trained 
and evaluated using mel-spectrograms features generated from the 
cough audio.

Scalograms for each second log audio clips were extracted using 
complex Morlet transformation (54). We selected the wavelet as the 
shape of the complex Morlet mother wavelet, a sine wave tapered by a 
Gaussian, resembles the shape of an audio waveform. After manual 

tuning, mother wavelet with bandwidth of 1.5 and center frequency of 
1 was selected for our application and amplitudes were converted to 
log scale. To reduce redundancy, hundred scales (inversely related to 
frequency) with logarithmic spacing were selected in the frequency 
range of 10 to 16 kHz, resulting in a 2D scalogram of size 100 × 
44,100. Boundary effects were mitigated by masking 

√

2
∗

Scales sam-
ples at each scale (60). Next, to reduce the dimensionality, instead of 
feeding the scalogram directly, resized and scaled color image (Py-
thon’s matplotlib) of the scalogram with amplitudes in logarithmic 
scale (448 × 224 × 3, PNG) was fed to the model. To generate images, 
different frequency ranges of wavelets were selected from 100 × 44,100 
scalogram array to understand impact of frequency. Furthermore, 
scalograms were additionally generated with audio down-sampled to 
8 kHz to compare its impact on modeling. Mel-spectrogram features 
for the ResNet18 baseline model were extracted from a second-long 
audio samples using PyTorch torchaudio’s mel-spectrogram transfor-
mation (window length: 0.025 s, hop length: 0.01 s, audio sampling 
rate: 44.1 kHz) with amplitudes in log scale. Inputs for VGGish were 
generated using the preprocessing pipeline proposed in the publica-
tion (window length: 0.025 s, hop length: 0.01 s, audio sampling rate: 
16 kHz) (57). Further details for generating cough features are sum-
marized in Supplementary Text and fig. S3 (A to F).

TB—binary classification model architecture
ImageNet pretrained ResNet18 (53) was used to train the scalogram 
and log mel spectrogram based model. It has four residual convolu-
tional blocks called the feature layers, followed by an adaptive average 
pooling layer and a final dense layer termed as the classification layer. 
The original model architecture was modified by replacing the classi-
fication layer (a single dense layer) with two dense layers. ReLu activa-
tion was used between the two dense layers and sigmoid activation for 
the final layer (Fig. 3B and table S3). The second baseline model was 
built using pretrained VGGish and modified to include an additional 
dense layer with sigmoid activation. Model architecture for baseline 
models is summarized in tables S5 and S6.

TB—multiclass classification model architecture
This model was similar to the ResNet18-based binary classifier, apart 
from the output layer that had three classes instead of one (table S4). 
The input feature set consists of scalograms in the frequency range of 
10 to 4 kHz from audio data sampled at 44.1 kHz.

Training and evaluation
We used transfer learning by leveraging the image classification model 
ResNet18, pretrained with millions of images (70) to train our TB ver-
sus non-TB binary classifier. The scalogram image is different from 
the ImageNet dataset, which has been used to train the ResNet18, 
requiring us to fine-tune both the feature layer along with training 
the classification layers of the model. We used binary cross-entropy 
loss with the Adam optimizer to train the all-binary models. The 
model hyperparameters—learning rate for feature/classification layers, 
learning rate scheduler, and batch size—were tuned to adjust the 
model performance. Inputs to the model were adjusted with ImageNet-
based default mean and SD for ResNet18. The model was trained for at 
least 20 epochs, after which training and validation loss were moni-
tored to stop the model training early. The model training was stopped 
when the training loss did not improve for 10 consecutive epochs or 
the validation loss increased for 10 continuous epochs. The knee point 
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of the training curve, the point at which training stabilizes, was calcu-
lated with Python’s kneed library, and the model thereafter with the 
best validation accuracy was selected for each fold (Supplementary 
Text and fig. S4). The baseline ResNet18 model was similarly trained 
using ImageNet’s pretrained weights and fine-tuned. VGGish model 
(57) was also initialized with pretrained weights, initially trained on 
Audioset, and further fine-tuned.

The classifiers were trained and tested using fivefold, nested, 
cross-validation with the balanced dataset divided into subject-
independent five folds and having an equal number of TB and 
non-TB subjects. Gender distribution for TB and non-TB subjects 
was kept identical in each fold (Fig. 4C). In each of the five itera-
tions, the model was tested on one of the folds while trained and 
tuned using the rest of the four folds (Fig. 3A). This was repeated 
five times so that each subfold acted as an independent test set, 
giving us five sets of model metrics. In each training, three of the 
four training folds were used for training, and one fold was set 
aside for validation to adjust the model hyperparameters. Because 
there were four folds in total for training and validation, we trained 
and validated four models and the best-performing model (fig. S4) 
was selected to evaluate the independent test set (Fig. 3). All mod-
els were trained with PyTorch using multiple GPUs (Nvidia RTX 
2080 Ti, Quadro RTX 6000) part of the Hyak supercomputer sys-
tem at the University of Washington.

Model performance was evaluated using ROC-AUC scores, sensi-
tivity was calculated at 50% decision threshold, sensitivity was calcu-
lated at 70% specificity, and specificity was calculated at 50% decision 
threshold. Mean metric with SD across five folds is reported. In addi-
tion, supplemental tables are provided by aggregating results from all 
the five folds. Overall mean with 95% CI is estimated using stratified 
bootstrapping with n = 2000. The best-performing scalogram image–
based binary model (highest ROC-AUC score) across different folds 
was trained with a learning rate of 0.000001 for feature layers, 0.00001 
for the classification layer, a batch size of 32, and a scheduler that de-
creases the learning rate by 0.1 every 20 epochs. Training parameters 
for the best-performing models in various categories are summarized 
in table S2.

In training multiclass model, we used cross entropy loss with 
SoftMax activation for the output layer. The model was trained/
validated using four of the five folds and evaluated on the one left-
out fold. Performance was measured using overall accuracy, and 
class-specific metrics were calculated from the confusion matrix 
(table S2).

Statistical analysis
The Mann-Whitney U test was used to assess statistical significance 
without any assumption of normality in the dataset. We assessed as-
sociations between cough frequency and TB characteristics using 
multivariate generalized linear regression models in which we includ-
ed predictor variables (age, sex, HIV status, GeneXpert grade, GeneX-
pert Ct values, AFB smear grade, and chest x-ray cavitation) with P 
values of <0.20 in bivariate analyses. Using the “nestreg” command in 
Stata, models were compared using likelihood ratio tests. CIs were es-
timated using bootstrapping with n = 2000 iterations. Differences be-
tween ROC curves were tested for significance using DeLong’s test. 
Statistical tests were two-sided with α = 0.05, with only cough counts 
evaluated using greater hypothesis for TB cough. Analyses were per-
formed using Stata 14 (StataCorp, College Station, TX), R: A Lan-
guage and Environment for Statistical Computing, and Python.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S7
Tables S1 to S16
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