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Abstract— Non-contact physiological measurement has
the potential to provide low-cost, non-invasive health mon-
itoring. However, machine vision approaches are often lim-
ited by the availability and diversity of annotated video
datasets resulting in poor generalization to complex real-
life conditions. To address these challenges, this work pro-
poses the use of synthetic avatars that display facial blood
flow changes and allow for systematic generation of sam-
ples under a wide variety of conditions. Our results show
that training on both simulated and real video data can
lead to performance gains under challenging conditions.
We show strong performance on three large benchmark
datasets and improved robustness to skin type and motion.
These results highlight the promise of synthetic data for
training camera-based pulse measurement; however, fur-
ther research and validation is needed to establish whether
synthetic data alone could be sufficient for training models.

Index Terms— Simulation, Synthetics, Camera, Non-
Contact, Photoplethysmography

I. INTRODUCTION

Photoplethysmography (PPG) is a non-invasive method for
measuring peripheral hemodynamics and vital signals such
as Blood Volume Pulse (BVP) via light reflected from, or
transmitted through, the skin. While traditional PPG sensors
are used in contact with the skin, digital imagers can be used
offering some unique benefits [5], [39], [51], [58], [64]. First,
for subjects with delicate skin (e.g., infants in a Neonatal
Intensive Care Unit (NICU), burn patients, or the elderly)
contact sensors can damage their skin, cause discomfort,
and/or increase their likelihood of infection. Second, cameras
are ubiquitous (available on many tablets, personal computers,
and cellphones) offering unobtrusive and pervasive health
monitoring [59]. Third, unlike traditional contact measurement
devices (e.g., a smartwatch) remote cameras allow for spatial
mapping of the pulse signal that can be used to approximate
pulse wave velocity and capture spatial patterns in the periph-
eral hemodynamics [24], [25], [44].

While there are many benefits of non-contact PPG mea-
surement (a.k.a., imaging photoplethysmography (iPPG) [64]),
this approach is especially vulnerable to different environmen-
tal factors posing relevant research challenges. For instance,
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recent research has focused on making iPPG measurements
more robust under dynamic lighting and motion [53], [61].
Historically, iPPG methods often relied on unsupervised meth-
ods (e.g., ICA or PCA) [33], [39] or hand-crafted demixing
algorithms [12], [61]. Recently, supervised neural models have
been proposed providing state-of-the-art performance in the
context of heart rate measurement [11], [27], [28], [65]. These
performance gains are often a direct result of the model scaling
well with the volume of training data; however, as with many
tasks the volume and diversity of the available data soon
become the limiting factor.
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Fig. 1. We propose the use of synthetic avatars to improve non-contact
physiological measurement via imaging photoplethysmography. Our ap-
proach leverages a physically-based model of the subsurface absorption
and scattering of light in the skin to display facial blood flow under
different conditions: varied motions, backgrounds and appearances. We
observe that training a network on a combination of real and synthetic
videos leads to the best overall performance on real videos.

Collecting high-quality physiological data presents numer-
ous challenges. First, recruiting and instrumenting participants
is often expensive and requires advanced technical expertise
which severely limits its potential volume. Second, training
datasets that have already been collected may not contain the
types of motion, illumination changes, or appearances that
feature in the application context. Thus, a model trained on
these data may be brittle and not generalize well. Third, the
data can reveal the identity of the subjects and/or sensitive
health information. For imaging methods this is exacerbated
by the fact that most datasets of video recordings include
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the subjects face in some or all of the frames [18], [46],
[67]. If we could use synthetic data to train iPPG systems it
would, to an extent, side-step all three of these challenges and
make for an attractive prospect. Once a graphics pipeline is in
place, generation of synthetic data is much more scalable than
recording videos as computation is relatively inexpensive and
can be procured at will using cloud computing. In addition,
rare events or typically underrepresented populations can be
simulated in videos, assuming we have some knowledge of
the statistical properties of the events or a set of examples.
Furthermore, synthetic datasets would not need to contain
faces or physiological signals with the likeness of any specific
individual. Finally, parameterized simulations allow us to
systematically vary certain variables of interest (e.g., velocity
of motion or intensity of the illumination within a video)
which is both useful to train more robust methods as well
as evaluating performance under different conditions [54].

We propose to use high-fidelity computer simulations to
augment training data that can be used to improve non-
contact iPPG measurement (see Fig. 1). This involves answer-
ing several research questions: Can we simulate sufficiently
high-fidelity data for training iPPG algorithms? Do model
parameters learned on synthetic data generalize to real videos?
Can using synthetic data help improve generalizability of the
learned model? We hypothesize that this is indeed the case
and that data synthesis will play a more important role when
creating future non-contact physiological measurement meth-
ods. The main contributions of this paper are to: 1) propose
an approach for synthesizing avatars with realistic facial blood
flow as synthetic data for training non-contact physiological
measurement models, 2) evaluate a set of models trained
on combinations of real and synthetic data on benchmark
datasets, 3) show empirical results that synthetic data can
help improve overall performance and offer improvements in
cases where data is underrepresented in real-world datasets
(e.g., task specific motions, or people with darker skin types).

II. RELATED WORK

Non-Contact Physiological Measurement. The BVP can
be measured via the light reflected from, or transmitted
through, the skin [4]. Imaging-PPG is a set of techniques for
measuring this signal using non-contact imagers (e.g., a web-
cam) and ambient light. Foundational work showed that this
signal could be measured via a CCD camera sensor [6], [64].
This work showed that both infra-red and RGB cameras were
capable of capturing this subtle information from a video.
Following this, further studies were able to replicate these
results using different imaging device and measuring the signal
from several regions on the body including the face [51], [58],
[68], [69]. More recent research has focused on making these
algorithms more robust to motion (e.g., rigid head motions and
speech) and dynamic illumination [39], [53], [60]. Imaging
PPG has enabled the non-contact measurement of several
important vital signs and physiological signals including: pulse
rate [39], respiration [39], [52], pulse rate variability [39], [49]
and pulse transit time [44]. Preliminary work has also shown
that it is possible to measure blood oxygen saturation using

imagers; however, this still requires calibration as the device
and ambient illumination are important parameters in the
calculations [52]. Morphological changes in the BVP signal
have been shown to be indicators of high blood pressure [1],
[17] and could be helpful in assessing the impact of certain
chronic conditions, such as hypertension. Several datasets have
been collected and shared with the research community [7],
[34], [46], [67]. These datasets contain hundreds of videos
with ground-truth physiological recordings (either PPG, ECG
or both). However, despite the size and availability of these
data there remain limitations. The diversity in skin types,
systematic variations of noise signals (e.g., motion or lighting
changes), and the presence of physiological abnormalities
(e.g., arrhythmias) are not very high.

Supervised Camera-based Cardiac Pulse Measurement.
Convolutional networks are the most common form of su-
pervised learning used for camera physiological measure-
ment [11], [31], [47], [48], [65]. Chen and McDuff [11]
and Špetlı́k et al. both proposed two part networks, the
former using parallel branches and a gate attention and the
latter using sequential “extractor” and “predictor” networks.
Given the characteristic morphology and periodicity of many
physiological signals sequence learning (e.g., via an LSTM or
RNN) can help remove noise from predicted waveforms [27],
[30], [35], [65]. Temporal information can also be captured
with 3D convolution operations [9], [28], [65].

Generative adversarial training has also proven useful, Pulse
GAN [47] is one such example, in which the authors used
a chromiance signal as an intermediate representation during
the training process. In another example, the Dual-GAN [31]
method involves segmentation of multiple facial regions of
interest using a set of facial landmarks. These regions of
interest are then spatially averaged and transformed into both
RGB and YUV colorspaces. Using these data spatio-temporal
maps (STMaps) are constructed which form the input to a
convolutional network. This method produces strong results
thanks to careful segmentation and the ability to leverage
multiple color space representations.

Given the high individual variability in both visual appear-
ance and physiological signals, personalization or customiza-
tion of models becomes attractive. Personalization techniques
have been proposed for camera physiological measurement.
Meta-RPPG [27] was the first such approach which focuses
on using transductive inference based meta-learning. Liu et
al. [29] proposed a meta-learning framework built on top of
the CAN architecture we use in this work.

Training-based on Simulation. One of the most notable
properties of neural models is how they scale efficiently
with the number of training examples. A large amount of
engineering and research efforts have been invested in scaling
learning infrastructures so that models with vast numbers
(millions or billions) of parameters can be trained with time
efficiency. However, it is becoming increasingly difficult to
collect sufficient volumes of labeled data to exploit this scale,
especially for video-based applications.

Using parameterized graphics simulations to augment ex-
isting datasets have been extensively explored in different
computer vision domains [21], [45], [54]–[57] such as training
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pose recognition [45], scene segmentation for self-driving
cars [40], improving object recognition [37], detecting pedes-
trians under different conditions [54], and for performance
evaluation of learned models [21]. AirSim is a graphics-based
simulation environment [42] that has been successfully used
in the context of training autonomous drone navigation [8].
In the context of physiological sensing; however, synthetic
data has been mostly used for evaluation purposes of different
algorithms considering other modalities (e.g., [10], [16], [36]).
To the best of our knowledge, our work is the first example
of using high-fidelity physiological simulations to train iPPG
methods.

Synthetics have proven particularly valuable for face and
body analyses. In training, synthetics have been used suc-
cessfully to create models for landmark localization and face
parsing [62], body pose estimation [45] and eye tracking [63].
Although not completely representative of real observations,
synthetics are also valuable in testing (e.g., for face detection
or eye tracking [50]).

Our work is made possible thanks to the ability to render
high-fidelity frames/videos with an optical basis for manip-
ulating blood volume in the skin. Creating realistic blood
flow simulations is achieved by modelling the appearance of
multiple translucent skin layers [3], [15], [23]. These dynamic
appearance models usually capture the subsurface scattering
that occurs when light interacts with the outer layers of the
skin, and are motivated by in-vivo measurements of melanin
and hemoglobin concentrations [22].

III. OPTICAL BASIS FOR SYNTHESIZED DATA

Camera-based vital sign measurement using photoplethys-
mography involves capturing subtle color changes in skin
pixels. Our graphics simulation is inspired by Shafer’s dichro-
matic reflection model (DRM) [61]. We start by assuming
there is a light source that has a constant spectral composition
but varying intensity, the RGB values of the k-th skin pixel
in an image sequence can then be defined by a time-varying
function:

CCCk(t) = I(t) · (vvvs(t) + vvvd(t)) + vvvn(t) (1)

CCCk(t) = I(t) · (vvvs(t) + vvvabs(t) + vvvsub(t)) + vvvn(t) (2)

where CCCk(t) denotes a vector of the RGB color channel
values; I(t) is the luminance intensity level, which changes
with the light source as well as the distance between the light
source, skin tissue and camera; I(t) is modulated by two
components in the DRM: specular (glossy) reflection vvvs(t),
mirror-like light reflection from the skin surface, and diffuse
reflection vvvd(t). The diffuse reflection in turn has two parts:
the absorption vvvabs(t) and sub-surface scattering of light in
skin-tissues vvvsub(t); vvvn(t) denotes the quantization noise of
the camera sensor. I(t), vvvs(t) and vvvd(t) can all be decomposed
into a stationary and a time-dependent part through a linear
transformation [61]:

vvvd(t) = uuud · d0 + (uuuabs + uuusub) · p(t) (3)

where uuud denotes the unit color vector of the skin-tissue; d0
denotes the stationary reflection strength; vvvabs(t) and vvvsub(t)

denote the relative pulsatile strengths caused by both changes
in hemoglobin and melanin absorption and changes in subsur-
face scattering respectively, as the blood volume changes; p(t)
denotes the BVP.

vvvs(t) = uuus · (s0 + Φ(m(t), p(t))) (4)

where uuus is the unit color vector of the light source
spectrum; s0 and Φ(m(t), p(t)) denote the stationary and
varying parts of specular reflections; m(t) denotes all the non-
physiological variations such as flickering of the light source,
head rotation, facial expressions and actions (e.g., blinking,
smiling).

I(t) = I0 · (1 + Ψ(m(t), p(t))) (5)

where I0 is the stationary part of the luminance intensity,
and I0 · Ψ(m(t), p(t)) is the intensity variation observed by
the camera.

The interaction between physiological and non-
physiological motions, Φ(·) and Ψ(·), are usually complex
non-linear functions. The stationary components from the
specular and diffuse reflections can be combined into a single
component representing the stationary skin reflection:

uuuc · c0 = uuus · s0 + uuud · d0 (6)

where uuuc denotes the unit color vector of the skin reflection
and c0 denotes the reflection strength. Substituting (3), (4), (5)
and (6) into (1), produces:

CCCk(t) = I0 · (1 + Ψ(m(t), p(t)))·
(uuuc · c0 +uuus ·Φ(m(t), p(t)) + (uuuabs +uuusub) · p(t)) + vvvn(t)

(7)

As the time-varying components are orders of magnitude
smaller than the stationary components in (7), we can approx-
imate CCCk(t) as:

CCCk(t) ≈ uuuc · I0 · c0 + uuuc · I0 · c0 ·Ψ(m(t), p(t))+

uuus · I0 · Φ(m(t), p(t)) + (uuuabs + uuusub) · I0 · p(t) + vvvn(t)
(8)

For synthesizing data for physiological measurement meth-
ods, we want to create skin with RGB changes that vary with
p(t). Using a principled bidirectional scattering distribution
function (BSDF) shader, we are able to capture both of the
components of uuup, uuuabs and uuusub, using the subsurface color
and subsurface radius parameters. The specular reflections are
controlled by the specular parameter. Thus, for a given pulse
signal, p(t), we can synthesize the skin’s appearance over
time. Furthermore, we can synthesize these changes in a wide
variety of other variations, which for the purposes of vital sign
measurement will represent noise sources.

For any of the video-based physiological measurement
methods, the task is to extract p(t) from CCCk(t). The motivation
for using a machine learning model to capture the relation-
ship between CCCk(t) and p(t) in (8) is that a neural model
can capture a more complex relationships than hand-crafted
demixing or source separation algorithms (e.g., ICA, PCA)
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that have ignored p(t) inside Φ(·) and Ψ(·), and assumed a
linear relationship between CCCk(t) and p(t).

IV. AVATAR SYNTHESIS

We use high-fidelity facial avatars and a physiologically-
based animation model for simulating videos of faces with
a realistic blood flow (pulse) signal. These videos are then
used to train a neural model for recovering the BVP from
video sequences. The resulting model is tested on real video
benchmark datasets. This process is shown in Fig. 1.

A. Physiological Recordings
To synthesize the appearance of the avatars, we use

photoplethysmographic waveforms recordings from Phys-
ioNet [20]. Specifically, we use the BIDMC PPG and Res-
piration Dataset [38] which include 53 8-minute contact PPG
recordings sampled at 125Hz from different individuals. These
recordings were taken from the larger MIMIC-II dataset [41].
We sample PPG recordings from different subjects for each
of the 50 avatars that we synthesize. As we only synthe-
size/render short sequences (nine 10-second sequences de-
scribed below) for each avatar we only use the first 90 seconds
(9×10 seconds) of each recording.

B. Synthesizing Videos with Pulse Signals
A key part of our work is a realistic model of facial blood

flow. We simulate blood flow by adjusting properties of the
physically-based shading material we use for the face1. The
albedo component of the material is a texture map transferred
from a high-quality 3D face scan. The facial hair has been
removed from these textures by an artist so that the skin
properties can be easily manipulated (3D hair can be added
later in the process). Specular effects are controlled with an
artist-created roughness map, to make some parts of the face
(e.g. the lips) shinier than others. An example of our material
setup can be seen in Fig. 2.

Subsurface Skin Color: As blood flows through the skin,
the composition of the skin changes and causes variations
in subsurface color. We manipulate skin tone changes using
the subsurface color parameters. The weights for this are
derived from the absorption spectrum of hemoglobin and
typical frequency bands from an exemplar digital camera2

(Red: 550-700 nm, Green: 400-650 nm, Blue: 350-550 nm). In
this work we globally vary these across all skin pixels on the
albedo map (but not non-skin pixels). Specifically, we used
relative subsurface scattering coefficients of 0.36, 0.41 and
0.23 for the red, green and blue channels respectively. We
varied these by up to 0.1 for each of the synthesized videos
within a normal distribution about each of the values.

Subsurface Scattering: We manipulate the subsurface ra-
dius for the channels to capture the changes in subsurface
scattering as the blood volume varies. The subsurface scat-
tering is spatially weighted using an artist-created subsurface
scattering radius texture (see Fig. 2) which captures variations

1https://www.blender.org/
2https://www.bnl.gov/atf/docs/scout-gusersmanual.pdf

in the thickness of the skin across the face. We vary the
BSDF subsurface radii for the RGB channels using the same
weighting prior as above. Empirically we find these parameters
work for synthesizing data for training camera-based vital sign
measurement. We found that varying the subsurface scattering
alone, without changes in subsurface color, were too subtle
and could not recreate the effects the BVP on reflected light
observed in real videos.

C. Systematic Variations
To obtain machine learning systems that are robust to certain

forms of variation encountered in the real world, we introduced
the following types of variation into our dataset:

Facial Appearance. We synthesized faces with 50 different
appearances (examples can be seen in Fig. 3). The facial
identities are made up from a combination of component
parts, including: geometry from a generative parametric face
model constructed from face scans, texture from albedo and
displacement textures constructed directly from face scans, eye
color from a selection of eye colors, hair from a library of hair
grooms. Each of these components are sampled independently
to arrive at a random facial identity. We used 3D face scans
purchased from publicly available sources3. These scans have
been retopologized (aligned) and cleaned by us to make them
suitable for parametric model training and use as a source for
textures. Specifically, for each face, we set up the skin material
with an albedo texture picked at random from our collection of
159 textures. The textures were created by using the raw scans
available to us as the source, and the retopologized version
of those scans as the target for albedo and displacement
map projection. In addition, we performed some cleaning
of the source scans to remove undesired artifacts such as
hairnets, head hair and facial hair. In order to model wrinkle-
scale geometry, we also apply a matching high-resolution
displacement map that was transferred from the scan data.
Characterizing differences in facial appearance is challenging.
However, skin tone is particularly important in imaging PPG
measurement. The Fitzpatrick scale [19] is a dermatological
tool that captures the melanin content of the skin and is
used to help describe the impact of UV radiation. As such
it only describes the skin type and does not capture any other
differences about appearance such as facial structure which
vary around the world, but currently it is the most widely used
approach for systematically analyzing differences in methods
to skin tone. We are currently investigating alternative coding
schemes but at the present time feel that the Fitzpatrick scale
is the most appropriate to use. The approximate Fitzpartick
skin type distribution for the 50 faces was: Type I - 9, II - 15,
III - 12, IV - 4, V - 5, VI - 5. While this distribution is still
not uniform, it represents a much more balanced distribution
than in existing imaging PPG datasets. Just under half (21)
of the avatars were synthesized with some form of facial hair
(beard and/or moustache) to further increase the variety in
appearance.

Head Motion. Since motion is one of the greatest sources
of noise in imaging PPG measurement, we simulate a set of

3https://www.3dscanstore.com/
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Fig. 2. Our approach to synthesizing videos of faces with dynamic blood flow signals. We start with a face albedo, base subsurface color and input
pulse signal. The skin properties are varied temporally based on hemoglobin properties. The subsurface skin color captures changes in absorption,
vvvabs(t), with variations in hemoglobin. The subsurface scattering, vvvsub(t), captures how light scattering changes with the volume of blood.

Fig. 3. Examples of the appearances of the avatars we synthesized for
our dataset.

rigid head motions to augment training examples that capture
these conditions. In particular, we smoothly rotate the head
about the vertical axis at angular velocities of 0, 10, 20, and
30 degrees/second similar to prior work [18]. Six of the nine
videos synthesized for each avatar features motion, two at each
angular velocity.

Facial Expression. Similar to head motions, facial expres-
sions movements are also a frequent source of noise in PPG
measurement. We synthesized videos with smiling, blinking,
and mouth opening (similar to speaking), which are some of
the most common facial expressions exhibited in everyday life.
We apply smiles and blinks to the face using our collection of
artist-created blend shapes, and we open the mouth by rotating

the jaw bone with linear blend skinning. Four of the nine
videos synthesized had smiling, mouth opening, and blinking
motions.

Environment. We render faces in different image-based
environments to create a realistic variety in both background
appearance and illumination on the face [14]. For each se-
quence, we pick one high dynamic range spherical environ-
ment map from our collection [66] (see Fig. 2 for examples).
The lighting in each environment is dependent on the HDRI
used to synthesize each video. Thus each synthetic video has a
different lighting spectral composition, direction and intensity.
In this work we synthesized static background scenes only, but
future work may benefit from considering backgrounds with
motion, or even facial occlusions that more closely resemble
challenging real-life conditions.

D. The Final Synthetic Dataset

We rendered nine video sequences for each of our 50
different facial identities, resulting in 450 video sequences in
total. Each sequence was 10 seconds long, with a frame-rate
of 30Hz. The nine clips feature rotational head motions, facial
expressions, and different backgrounds as described above.
Each frame took approximately 20 seconds to render with
Blender Cycles4 on an Nvidia GTX 1080Ti GPU. These videos
were used to train a convolutional attention network described
in Section V-B. The trained network was then tested on three
benchmark video datasets of non-synthetic (a.k.a real) videos
described in Section V-A.

V. EXPERIMENTS

A. Benchmark Datasets

AFRL [18]: Videos were recorded at 658x492 pixel resolu-
tion and 120 frames per second (fps) using a Basler Scout
scA640-120gc GigE-standard, color camera. These videos

4https://docs.blender.org/manual/en/latest/render/cycles/index.html
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were compressed with a constant rate factor (CRF) of 12.
Twenty-five participants (17 males) were recruited to partic-
ipate in the study. Fingertip PPG was recorded as ground
truth signals using a research-grade biopotential acquisition
unit. Each participant was recorded six times for 5-minutes
each with increasing head motion in each experiment and this
process was repeated twice in front of two background screens.

MMSE-HR [67]: 102 videos of 40 participants were
recorded at 25 fps capturing 1040x1392 resolution images in
an uncompressed format using a 3D dynamic imaging system5

during spontaneous emotion elicitation experiments. The gold
standard contact signal was measured via a Biopac2 MP150
system6 which provided pulse rate at 1000 fps and was updated
after each heartbeat. These videos feature smaller but more
spontaneous motions than those in the AFRL dataset.

UBFC-RPPG [7]: 42 videos of 42 participants were
recorded at 640x480 resolution and 30 fps in uncompressed
8-bit RGB format using a Logitech C920 HD pro. A fingertip
oximeter was used to obtain the gold standard PPG.

B. Physiological Measurement Network
To evaluate the impact of synthetic data on the quality

of recovered pulse signals from video, we used an existing
end-to-end learning model, Convolutional Attention Network
(CAN) [11], which uses motion and appearance representa-
tions learned jointly through an attention mechanism. An il-
lustration of a CAN network architecture is shown in Figure 4.
The approach consists of a two-branch convolutional neural
network to represent motion and appearance.

1A
p
p
e
a
ra
n
ce

M
o
ti
o
n

Pulse

Synthesized Video Frames

C(t+1)C(t)

Fig. 4. An illustration of the convolutional attention network (CAN)
architecture that we used in our experiments. To make the figure clearer
in this image each convolutional layer shown reflects a pair layers one
following the other and the fully connected layer reflects a pair of fully
connected layers.

The motion representation branch allows the network to
differentiate between intensity variations caused by noise,
e.g., from motion from subtle characteristic intensity variations
induced by blood flow. The input to the motion representation
branch is calculated as the difference of two consecutive
video frames. To reduce the noise from changes in ambient
illumination and the distance of the face to the illumination
source, the frame difference is first normalized based on

5https://di4d.com/
6https://www.biopac.com/

the skin reflection model [61]. The normalization is applied
to each video sequence by subtracting the pixel mean and
dividing by the standard deviation. We perform normalization
on real and synthetic frames.

The appearance representation captures the regions in the
image that contribute strong iPPG signals. Via the attention
mechanism, the appearance representation guides the motion
representation and helps differentiate the PPG signal from
the other sources of noise. The input frames are similarly
normalized by subtracting the mean and dividing by the
standard deviation. Again the same procedure is used for the
real and synthetic frames.

C. Performance Metrics

To provide a comprehensive characterization of the per-
formance of the models trained on simulated data, we used
different metrics to evaluate two main components.

Heart Rate: We compute heart rate estimates for non-
overlapping 30-second windows and calculate the mean ab-
solute error (MAE) and root mean squared error (RMSE)
between these estimates and the gold-standard heart rate cal-
culated from the contact sensor measurements in each dataset.
As follows:

MAE =
1

T

T∑
1

|HRi −HR′
i| (9)

RMSE =

√√√√ 1

T

T∑
1

(HRi −HR′
i)

2 (10)

Where HR is the gold-standard heart rate and HR’ is the
estimated heart rate from the video. The gold-standard HR
frequency was determined from the manually corrected ECG
peaks in the AFRL dataset and the HR estimates provided
with the dataset for the MMSE-HR dataset.

We also compute the Pearson correlation between the esti-
mated heart rates and the gold-standard heart rates from the
contact sensor measurements.

BVP Signal-to-Noise Ratio (SNR):
The BVP signal-to-noise (SNR) is calculated according to

the method proposed by De Haan et al. [13]. This captures
the signal quality of the recovered pulse estimate. Again,
the gold-standard HR frequency was determined from the
manually corrected ECG peaks in the AFRL dataset and the
HR estimates provided with the dataset for the MMSE-HR
dataset.

SNR = 10log10

( ∑240
f=30((Ut(f)Ŝ(f))2∑240

f=30(1− Ut(f))Ŝ(f))2)

)
(11)

where Ŝ is the power spectrum of the BVP signal (S), f is the
frequency (in BPM) and Ut(f) is a binary template that is one
for the heart rate region from HR-6 BPM to HR+6BPM and its
first harmonic region from 2*HR-12BPM to 2*HR+12BPM,
and 0 elsewhere. The HR and BVP SNR (measured in dB) is
calculated for non-overlapping 30 second time windows.
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D. Training and Testing

In all our experiments we use a person independent training
regime and create training, validation and test partitions.

For experiments on the AFRL dataset, we perform a five-
fold evaluation in which the 25 participants in the AFRL
dataset [18] were randomly divided into five folds, with 15
participants in the training set, five in the validation set,
and five in the test set. The learning models were then
trained to evaluate how our models can be generalized to new
participants. The validation set was used to select the epoch
for which the model would be used for testing. During training
and model selection the mean squared error (MSE) between
the predicted and gold-standard pulse waveforms was used as
the loss/performance metric.

The evaluation metrics for AFRL performance shown in
the results tables are all averaged over the five folds. Prior
work has shown that participant-independent training is a more
challenging task than participant-dependent training [11] and
it is a more realistic scenario for real-world applications. For
experiments on the MMSE-HR and UBFC datasets, we use
the model that performed best on the AFRL dataset and test it
without fine-tuning (i.e., dataset independent evaluation). We
compare our proposed approach to three other methods [12],
[39], [61] for recovering the BVP. These methods are unsuper-
vised and therefore results are reported across all participants
without the need for cross-validation on either dataset.

For the convolutional neural network architecture motion
representation model, we used nine layers with 128 hidden
units, average pooling and tanh as the activation functions. The
last layer of the motion model had linear activation units and
the MSE loss. For the appearance model, we used the same
architecture as the motion model but without the last three
layers, consistent with [11]. Finally, a 6th-order Butterworth
filter was applied to all model outputs (cut-off frequencies of
0.7 and 2.5 Hz) before computing the frequency spectra and
heart rate. The baseline methods were implemented using the
public MATLAB toolbox [32].

VI. RESULTS

Training with Synthetic Data. Our first experiments are
to validate the effect of using synthetic data to train the
vital signs measurement algorithm. Table I shows results of
models trained on non-synthetic (real) data, synthetic data,
and a combination of real and synthetic data. Results are
shown for the AFRL dataset for which we perform the five-
fold participant-independent cross-validation. For the MMSE
results we report performance of the model trained on the
AFRL data and thus this is both participant independent
(because no people feature in both dataset) and can be viewed
as an example of cross-dataset transfer learning. In all cases the
results are participant independent. The models trained on real
and synthetic data outperform the models trained only on real
data for both datasets. This is true for the BVP SNR reflecting
that the underlying pulse signal is cleaner and for HR MAE
and RMSE reflecting that the HR estimates are more accurate.
On the AFRL dataset the results are not very different because
training with real data from the same dataset already performs

very well (and the HR correlation is marginally higher). This
is because synthetic data does not provide a great benefit if the
distribution of the test data is very similar to that of the training
data. In the AFRL dataset the participants all have similar skin
types (tones) and the lighting is very constant across all videos.
Thus, if examples of all tasks from this dataset are included
in the training set, even if they feature different participants,
the margin for improvement is small.

However, when we perform a cross-dataset using a combi-
nation of synthetic and real data set provides a much more
considerable improvement. The MAE in HR estimates on
the MMSE dataset is 2.26 (compared to 3.74 for the next
best approach), a 40% reduction in error. In this case, the
distribution of the testing data is quite different from the
data in the training set and, consequently, the benefit of
using synthetics becomes apparent. The synthetic data help
improve the generalization of the model when there is a
larger domain gap between the training and testing data. To
provide a qualitative example, Fig. 5 shows an example of the
recovered pulse waveforms and corresponding power spectra
for two videos in the MMSE-HR dataset. Notice how the
pulse spectra are much cleaner and more closely resemble
the gold-standard when using the model trained on real and
synthetic data. Interestingly, the performance on the UBFC
dataset is strongest when training with only synthetic data, we
hypothesize this is because the domain gap between the real
training data and the UBFC test data is larger. Future work will
investigate how to characterize the difference between dataset
distributions in this domain.

Cross-Task Performance. Body motions are one of the
most common and problematic sources of noise in non-contact
vital signs measurement. In the previous analyses on the AFRL
dataset we included examples of every task in the training,
validation and test sets. However, when we train and validate
only on videos with static subjects and then test on videos with
head motions the improvements gained from using synthetic
data are much more dramatic (shown in Table II). The avatar
data includes heads with motions, the result highlights that
synthetic data can help bridge the gap between heads with
motion. For example, if no real video data with gold-standard
measurements were available with motions similar to those in
the test scenario we can synthesize data to bridge the gap.

Comparison with Benchmarks. Next let us compare per-
formance on both datasets against the other baseline methods.
Table I shows the results of the CAN alongside ICA [39],
CHROM [13] and POS [61]. On both datasets the neural
network trained on real and synthetic data outperforms all
the other methods. The POS method performs well on the
AFRL dataset with similar results in HR estimation, but a
lower BVP SNR. On the MMSE dataset the CAN outperforms
the other methods by a considerable margin (MAE = 2.26
BPM vs. 3.74 BPM from the next best method). Unsuper-
vised methods have previously been used more frequently
than supervised algorithms for imaging-based measurement
of vital signs because of concerns about the generalizability
of “trained” models. However, our results suggest that with
sufficient diversity in the training set that supervised methods
could have an advantage.
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TABLE I
BENCHMARK PERFORMANCE OF PULSE MEASUREMENT ON THE AFRL [18], MMSE-HR [67] AND UBFC [7] DATASETS. NOTE THAT THE AFRL

DATASET CONTAINS VIDEOS WITH SPECIFIC AND LARGE ROTATIONAL HEAD MOTIONS, WHILE OUR SYNTHETIC DATA DID CONTAIN ROTATIONAL HEAD

MOTIONS THE LARGE DIFFERENCE IN PERFORMANCE SUGGESTS THAT IT MAY NOT HAVE FAITHFULLY REFLECTED REALISTIC MOTION.

Within Dataset (Subj. Ind.) Across Dataset (Train on AFRL)
AFRL (All Tasks) [18] MMSE-HR [67] UBFC [7]

Method MAE RMSE ρ SNR (dB) MAE RMSE ρ SNR (dB) MAE RMSE ρ SNR (dB)
CAN (w/ Real+Synth) 2.42 4.37 0.88 6.57 2.26 3.70 0.97 4.85 5.15 9.51 0.77 0.79

CAN (w/ Synth) 9.23 13.4 0.36 -7.17 4.98 11.8 0.70 -1.98 5.01 8.90 0.80 -2.58
CAN (w/ Real) [11] 2.43 4.39 0.87 6.21 4.43 9.98 0.80 -0.66 5.83 10.9 0.68 -0.63

POS [61] 2.48 5.07 0.89 2.32 3.90 9.61 0.78 2.33 8.24 19.9 0.57 -1.19
CHROM [12] 6.42 12.4 0.60 -4.83 3.74 8.11 0.82 1.90 7.46 15.5 0.72 -1.10

ICA [39] 4.36 7.84 0.77 3.64 5.44 12.00 0.66 3.03 14.3 26.1 0.28 -2.67
MAE = Mean Absolute Error in HR estimation, RMSE = Root Mean Squared Error in HR estimation, SNR = BVP Signal-to-Noise Ratio, ρ = Pearson Correlation in HR estimation.
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Fig. 5. Examples of the blood volume pulse recovered using a camera and the trained neural network (thin black lines), with only (i) real and (ii)
synthetic and real data, in comparison with (iii) a finger contact sensor (thick black lines). PPG waveforms normalized from 0 to 1 and pulse power
spectra normalized from 0 to 1 are shown. Notice how the pulse spectra are much cleaner and more closely resemble the gold-standard when
using the model trained on real and synthetic data, compared to real data alone. These are qualitative examples of why we see an improvement in
BVP SNR as shown in Tables I.

Robustness to Skin Tone. Skin type influences the signal-
to-noise ratio (SNR) of the recovered BVP in many camera-
based vital sign measurement algorithms [2], [43], [61]. A
larger melanin concentration in people with darker skin ab-
sorbs more light, making the intensity of light returning to the
camera lower and thus the iPPG signal weaker. To exacerbate
this problem subjects with darker skin types are often under-
represented in computer vision datasets, including those used
for camera-based physiological measurement. Synthetic data
can be used to identify biases in CV systems and help address
them.

Figure 6 and Table III shows the performance when test-
ing the model on subjects with different skin types based
on the Fitzpatrick skin type scale [19] from the MMSE-
HR dataset [67]. The synthetic data provides a substantial
improvement in HR MAE, especially for the lightest (II)
and darkest (VI) skin types. These are the skin types that
are typically underrepresented in real video datasets used for
non-contact vital sign measurement algorithms, including the
AFRL dataset. Not only are the overall heart rate estimation

errors lower for all skin types, the standard deviation in
average heart rate MAE across skin types is approximately
halved when training with real and synthetic data compared
to when training with only real data. To summarize, our
results show that by using synthetic data we can also improve
performance on subjects whose appearance type (in this case
skin type) was underrepresented in the “real” portion of the
training data set. We should note, however, that when training
only on synthetic data the performance on the real videos
featuring subjects of skin types V and VI is poor. We have
a couple of hypotheses about the cause of this result. 1)
Our synthetic dataset, while arguably containing much greater
variance than the real training set (AFRL dataset), is relatively
quite a bit smaller. Therefore, there is a chance that overfitting
occurs and that this overfitting is most severe for the darker
skin type videos. 2) The MMSE-HR test set, while one of the
more diverse, contains only a few subjects with skin types V
and VI therefore, there is quite a large variance in performance.
Thus, sometimes when the model reaches a local minima this
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can lead to large errors on those subjects. We are encouraged
that combining synthetic and real data appears to help rectify
these errors somewhat.

TABLE II
TASK-INDEPENDENT PERFORMANCE: PULSE MEASUREMENT ON

VIDEOS WITHOUT HEAD MOTION (TASKS 1 & 2) AND WITH HEAD

MOTION (TASKS 3, 4, 5 & 6) FROM THE AFRL [18] DATASET WHEN

TRAINING ON VIDEOS WITHOUT MOTION (TASKS 1 & 2).

AFRL Motion Tasks (3-6)
Method MAE RMSE SNR ρ

CAN (w/ Real (Static) + Synthetic) 6.52 9.82 -0.30 0.63
CAN (w/ Real (Static)) 8.21 11.8 -1.68 0.50

CAN (w/ Synthetic) 14.1 18.9 -10.2 0.16
MAE = Mean Absolute Error in HR estimation, RMSE = Root Mean Squared Error in HR estimation, SNR = BVP

Signal-to-Noise Ratio, ρ = Pearson Correlation in HR estimation, WMAE = Waveform MAE.
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Fig. 6. Heart rate mean absolute error (BPM) by skin tone on
the MMSE-HR dataset [67]. Training with synthetic data reduces the
errors for the lightest (II) and darkest (VI) skin types the most, those
that are often underrepresented in real video training datasets. No. of
participants: II=8, III=11, IV=18, V=2, VI=2.

VII. DISCUSSION

Collecting datasets for training non-contact vital signal mea-
surement algorithms has several challenges. We have presented
an approach for synthesizing avatars that helps alleviate the
need for real videos. Our results show that training with
synthetic data can successfully improve the performance of
non-contact vital sign measurement. Specifically, including
synthesized and real video data in the training set can lead
to an improvement of the pulse SNR ratio as well as lowering
heart rate measurements errors compared to training with just
real video data alone. In particular, the recovered BVP signal
quality was much improved across both datasets (see Table I).

TABLE III
MEAN ABSOLUTE ERROR IN HEART RATE ESTIMATION BY PARTICIPANT

FITZPATRICK SKIN TONE CATEGORY. THE STANDARD DEVIATION IN

AVERAGE ERRORS ACROSS SKIN TONES IS SHOWN IN THE FINAL

COLUMN.

Fitz. Skin Tone
Method II III IV V VI σ

CAN (w/ Real + Synthetic) 2.10 2.55 1.59 5.43 1.88 1.56
CAN (w/ Real) 5.79 3.12 2.84 11.4 7.42 3.50

CAN (w/ Synthetic) 2.60 2.83 3.47 13.9 31.8 12.6

When training and testing on the same datasets (in a
participant-independent manner), the improvements were mod-
est. This suggests that when the testing data has a similar
distribution (similar motions, lighting, skin types) there is
not much benefit to be gained from synthetic data. Syn-
thetic data is particularly effective at reducing errors in
cross-domain learning, improving cross-task, cross-dataset and
cross-appearance generalization. Synthesizing data allows us
to create many combinations of facial appearances (skin tones,
hair styles, facial hair), expressions, speech, head motions
(rotational and translational), ambient lighting conditions and
backgrounds. Finally, we show that synthetic data can sub-
stantially improve (and reduce the variance in) performance
of non-contact vital sign measurement for skin tones under-
represented in training data.

VIII. LIMITATIONS AND FUTURE WORK

While synthetics are flexible and scalable once you have
created a pipeline, the initial overhead for this infrastructure is
expensive and labor-intensive to create. Our synthetics pipeline
involved a multi-year effort to create and unfortunately we
cannot publicly release the dataset at this time. Furthermore,
while we demonstrate that our synthetics pipeline can offer
a tangible benefit, we did not push the limits of the im-
provements that synthetic data can provide. It is possible
that greater improvements could have been obtained if we
had synthesized more face videos. However, the videos were
synthesized on a frame-by-frame basis taking approximately
an hour to synthesize a single 10s video.

While our results are promising and justify further explo-
ration of synthetic data as a tool for training video-based
cardiac measurement models, they do not conclusively prove
that synthetic data alone is sufficient for achieving state-of-
the-art results. More research and validation will be required
to ascertain the full potential of these tools and to design
methods that could overcome the gap between simulated and
real videos.

While our approach could be used for creating more motion
robust iPPG algorithms for non-contact measurement in fitness
centers or telehealth systems. Many of the applications of non-
contact vital signal measurement do not necessarily involve
analysis of adult faces. Modeling infants for training models
to be deployed in a NICU would be a great extension of this
work.

There are several ways it may be possible to improve upon
the results we have presented in this paper. In this work, we
used the synthetically generated images as they were rendered,
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we did not rigorously analyzed the amount of sensor noise
that needs to be added to the synthetic images to mimic the
quantization levels of different cameras. Noise such as this
could be added as a form of data augmentation. Similarly,
there are other forms of data augmentation that might help
with creating a more generalizable model including: applying
gamma or white balance correction to the synthetic frames and
mimicking motion blur or changes in camera focus.

The density of the microvascular bed of tissue is not
uniform across the skin and whether capillaries are open or
closed can also vary across time [26]. Our synthetics pipeline
cannot currently model these spatial and temporal changes
in the microvascular tissue, the light absorption is changed
uniformly for the whole skin texture. So while this does mean
that a model trained on the synthetic data learns good skin
segmentation, which is certainly beneficial for obtaining the
PPG signal, it could be improved further.

These promising results for training a remote PPG mea-
surement model using synthetic data leads us to believe that
it might be possible to use a similar approach for training
models for measuring blood oxygen saturation. However,
modeling oxygen saturation (volume of oxygenated versus de-
oxygenated blood) is a more complicated task than measuring
overall blood volume and our current implementation does not
support this.

IX. CONCLUSION

This work proposes the use of synthetic avatars to synthe-
size novel samples of facial blood volume changes that can
improve the robustness of non-contact physiological sensing
methods. We are looking forward to a future when similar
methodology can be used to not only improve the gener-
alization performance under challenging real-life scenarios
but also minimize potential performance differences across
underrepresented groups or people.
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