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Rapid diagnostic tests (RDTs) provide point-of-care medical screening without the need for expensive laboratory equipment.
RDTs are theoretically straightforward to use, yet their analog colorimetric output leaves room for diagnostic uncertainty and
error. Furthermore, RDT results within a community are kept isolated unless they are aggregated by healthcare workers,
limiting the potential that RDTs can have in supporting public health efforts. In light of these issues, we present a system
called RDTScan for detecting and interpreting lateral flow RDTs with a smartphone. RDTScan provides real-time guidance for
clear RDT image capture and automatic interpretation for accurate diagnostic decisions. RDTScan is structured to be quickly
configurable to new RDT designs by requiring only a template image and some metadata about how the RDT is supposed to be
read, making it easier to extend than a data-driven approach. Through a controlled lab study, we demonstrate that RDTScan’s
limit-of-detection can match, and even exceed, the performance of expert readers who are interpreting the physical RDTs
themselves. We then present two field evaluations of smartphone apps built on the RDTScan system: (1) at-home influenza
testing in Australia and (2) malaria testing by community healthcare workers in Kenya. RDTScan achieved 97.5% and 96.3%
accuracy compared to RDT interpretation by experts in the Australia Flu Study and the Kenya Malaria Study, respectively.

CCS Concepts: • Applied computing → Consumer health; Health informatics; • Human-centered computing →
Field studies; Smartphones.

Additional Key Words and Phrases: rapid diagnostic tests (RDTs), malaria, influenza, mobile health, image processing, image
quality control

Authors’ addresses: Chunjong Park, cjparkuw@cs.washington.edu; Hung Ngo, hvn297@cs.washington.edu; Libby Rose Lavitt, lrlavitt@
cs.washington.edu, University of Washington, USA; Vincent Karuri, vkaruri@ona.io; Shiven Bhatt, sbhatt@ona.io; Peter Lubell-Doughtie,
peter@ona.io, Ona, One Padmore Place, George Padmore Lane, Nairobi, Kenya; Anuraj H. Shankar, anuraj.shankar@ndm.ox.ac.uk, Centre
for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Old Road
Campus, Roosevelt Drive, Oxford, United Kingdom, OX3 7LG; Leonard Ndwiga, info@kemri.org; Victor Osoti, info@kemri.org; Juliana
K. Wambua, jwambua@kemri-wellcome.org; Philip Bejon, pbejon@kemri-wellcome.org; Lynette Isabella Ochola-Oyier, liochola@kemri-
wellcome.org, KEMRI-Wellcome Trust Research Programme, P.O. Box 54840 00200 Off Mbagathi Road, Nairobi, Kenya; Monique Chilver,
monique.chilver@adelaide.edu.au; Nigel Stocks, nigel.stocks@adelaide.edu.au, University of Adelaide, Helen Mayo North Building, Frome
Road, Adelaide, SA, 5005, Australia; Victoria Lyon, vlyon@uw.edu; Barry R. Lutz, blutz@uw.edu; Matthew Thompson, mjt@uw.edu, University
of Washington, USA; Alex Mariakakis, atm15@cs.washington.edu, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada;
Shwetak Patel, shwetak@cs.washington.edu, University of Washington, 185 Stevens Way NE, Seattle, WA, 98195, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2474-9567/2021/3-ART29
https://doi.org/10.1145/3448106

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 1, Article 29. Publication date: March 2021.

https://doi.org/10.1145/3448106


29:2 ˆ Park et al.

ACM Reference Format:
Chunjong Park, Hung Ngo, Libby Rose Lavitt, Vincent Karuri, Shiven Bhatt, Peter Lubell-Doughtie, Anuraj H. Shankar,
Leonard Ndwiga, Victor Osoti, Juliana K. Wambua, Philip Bejon, Lynette Isabella Ochola-Oyier, Monique Chilver, Nigel Stocks,
Victoria Lyon, Barry R. Lutz, Matthew Thompson, Alex Mariakakis, and Shwetak Patel. 2021. The Design and Evaluation of a
Mobile System for Rapid Diagnostic Test Interpretation.Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.5, 1, Article 29
(March 2021), 26 pages. https://doi.org/10.1145/3448106

1 INTRODUCTION
Over the past couple of decades, rapid diagnostic test (RDTs) have emerged as a potential solution to the pressing
need for accessible medical testing. RDTs utilize biochemistry to transduce the load of a biological sample (e.g.,
blood, urine, nasal swab) to an analog colorimetric output. As such, RDTs enable point-of-care diagnostics without
the need for expensive equipment. Pregnancy tests are one of the most well-known types of RDTs, but RDTs
exist for many other health purposes, such as malaria [2, 33, 38], in�uenza [23, 48], and HIV [27, 56]. Recently,
RDTs are being developed to support convenient COVID-19 testing during the pandemic1,2. RDTs are viable
to produce at scale, making them an inexpensive (� $1 USD each) alternative to laboratory tests and ideal for
point-of-care medical screening [32, 53]. RDTs are often associated with community healthcare settings in low-
and middle-income countries where resources and access to sophisticated testing facilities are limited, but RDTs
are used worldwide in clinics and homes as well [5, 44].

As RDTs become more commonplace, one concern is that people may misinterpret the visual results that
appear on their tests�overlooking faint lines, thinking they are seeing lines that are not actually present, or
misunderstanding the lines' meanings [20]. A system that interprets RDTs on the user's behalf would limit such
errors, leading to improved test accuracy and higher utility among end-users. The ability to digitally document
RDT results could also facilitate community-wide reporting, contact tracing, and surveillance networks during
disease outbreaks. The ideal system would satisfy the following requirements:

� High interpretation accuracy: The ideal system would have comparable diagnostic accuracy to an expert
directly reading the RDTs themselves. In addition, the ideal system would be consistent across settings (e.g.,
smartphone model, ambient environment). Such a system would improve the e�ective diagnostic accuracy
of RDTs in the �eld, particularly amongst novice users, while removing the potential for subjective, biased,
or rushed decision-making.

� Smartphone-only: RDTs are an attractive option for community use because all of the equipment needed
to run an RDT comes within an inexpensive kit. Introducing hardware or smartphone accessories, as past
researchers have proposed [11, 12, 22, 37, 42], hinders deployability. Roughly 45% of the global population
owns a smartphone as of April 2020 [3]. Speci�cally in sub-Saharan Africa, the Global System for Mobile
Communications (GSMA) estimates that the fraction of people who have a SIM connection will grow from
77% in 2019 to 86% in 2025, and the fraction of those connections coming from smartphones will rise to 65%
in 2025 [19]. Therefore, requiring a smartphone does not necessarily introduce signi�cant burden.

� Con�gurability to new RDT designs: Like many other products, lateral �ow RDTs are produced by
manufacturers with no overarching design standard beyond having results displayed as a set of lines.
Existing smartphone-based RDT readers are catered to speci�c RDT brands3,4, and a machine learning
approach would require a dataset with hundreds of images in diverse settings for model training to
accommodate new RDT designs. The ideal system would be quickly con�gurable so that new RDTs can be
used in response to epidemics.

1https://cellexcovid.com/
2https://en.wondfo.com.cn/product/wondfo-sars-cov-2-antibody-test-lateral-�ow-method-2/
3https://www.novarumdx.com/
4http://www.albagaia.com/hydrosense-app
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With these requirements in mind, we present RDTScan, an open-source system that supports automatic RDT
detection and interpretation on smartphones. RDTScan provides real-time guidance to users so that they capture
a high-quality photograph of their completed RDT; RDTScan then analyzes that photograph to infer the RDT's
result. RDTScan builds o� of our previous work [45] by improving the robustness of our feature-based template
matching approach to RDT detection, extending our system to accommodate new RDT designs, adding new
quality assurance checks to ensure accurate interpretation across di�erent RDT form factors, and rigorously
testing our system through multiple studies. We �rst evaluated our image processing pipeline in a controlled
laboratory study to demonstrate RDTScan's ability to automatically interpret RDTs. After we established that our
pipeline could either match or exceed human interpretation capabilities, we engaged with community health
surveillance programs to deploy RDTScan in two contrasting scenarios: (1) at-home in�uenza testing in Australia
and (2) malaria testing by CHWs in Kenya. Participants in both studies had success capturing a high-quality
photograph of their completed RDT, reaching an overall success rate of 83.3% and 91.9% in the Australia In�uenza
Study and Kenya Malaria Study, respectively. RDTScan showed comparable or slightly better interpretation
performance to that of experts. In the Australia In�uenza Study, RDTScan achieved 97.5% (85.7% sensitivity,
98.7% speci�city) compared to the experts and 83.6% accuracy (33.9% sensitivity, 98.4% speci�city) compared
to gold-standard clinical measurements. In the Kenya Malaria Study, RDTScan achieved 96.3% accuracy (95.5%
sensitivity, 98.7% speci�city) and 85.5% accuracy (92.9% sensitivity, 65.0% speci�city) compared to the experts and
gold-standard clinical measurements, respectively. In summary, our research delivers the following contributions:

(1) An open-source, smartphone-based RDT interpretation system5 that achieves comparable accuracy to
experts who are experienced in RDT administration without the need for additional hardware,

(2) An in-lab validation study showing RDTScan's interpretation accuracy across RDTs, analyte concentrations,
smartphone devices, and lighting conditions, and

(3) Two �eld evaluations that demonstrate the e�cacy of RDTScan in vastly di�erent settings.

2 RELATED WORK
RDTs leverage an assortment of techniques to detect medical conditions [32, 53]. Covering these techniques is out
of the scope of this work, so we instead focus on how RDTs have been incorporated into healthcare work�ows
around the world. We then describe past approaches to automatic RDT interpretation, after which we discuss
object interpretation for broader object categories.

2.1 Current Practices with RDTs
RDTs are typically used in settings outside of hospital environments, namely community and primary care
settings. RDTs are popular in these areas because of their low cost, ease of use by non-lab technicians, and
portability. RDTs have been used both for illnesses that are endemic in certain low- and middle-income countries
(e.g., malaria in sub-Saharan Africa [2, 33, 38], leishmaniasis in India [50]) as well as illnesses that are clinical
priorities in high-income countries (e.g., group A streptococcus [9], in�uenza [54, 58], HIV [27, 56]). Some RDTs
are already seeing use for at-home testing [5, 44], and we anticipate this trend will grow as more RDTs gain
regulatory clearance.

Although RDTs are becoming increasingly user-friendly, subjective interpretation of their output leaves room
for diagnostic uncertainty and error. This topic has mostly been explored in the context of malaria RDTs. Harvey
et al. [20] observed CHWs as they administered malaria RDTs and noted that only 54% were able to correctly
interpret the test results; the most common mistakes were failures to identify faint positive lines or invalid
results. Harvey et al. found that multi-day training programs improved interpretation accuracy to 93%, but such
programs are impractical in many cases since they can take CHWs away from other responsibilities. Although

5https://github.com/cjpark87/rdt-scan
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there have been attempts to improve procedural adherence and mitigate confusion by standardizing terminology,
labeling, and instructions across RDT manufacturers, these e�orts have typically been slow to implement and
have been focused around RDTs for the same condition [25]. Our work seeks to shift interpretation burden from
novice users to an automated analysis platform while being �exible enough to accommodate new designs with
signi�cantly less overhead than what would be required for a data-driven model.

2.2 Automated RDT Capture and Interpretation
Image interpretation is most successful when a clear image has been taken of the target object. Therefore, many
researchers have proposed standalone devices and smartphone adapters to control the imaging environment (i.e.,
ambient lighting, shadows, camera position) for automatic RDT interpretation [42]. An example of a standalone
device for this purpose is Fio's battery-operated Deki Reader6, which includes an internal chamber with controlled
lighting. Herrera et al. [22] compared the RDT interpretation accuracy of the Deki Reader against visual inspection
of the RDTs by experts and saw 99% concordance between the two. Mudanyali et al. [37] translated many of the
Deki Reader's features to a smartphone-based system, utilizing an LED array and other optical components for
imaging. Targeting a less expensive solution, Dell et al. [11, 12] and Ozkan et al. [43] independently proposed the
use of plastic stands for consistent positioning between the smartphone's camera and the RDT. Because hardware
and accessories enforce constraints on the imaging environment, the accompanying software can be highly tuned
and e�cient; however, incorporating hardware imposes additional �nancial costs to end-users and thus reduces
the ease-of-access and ubiquity that RDTs engender in the �rst place. In contrast, RDTScan transfers the burden
of image quality control from hardware to software while still being mindful of on-device computational limits.

There are commercial products for automatic RDT interpretation, as well. For example, Ellume7 produces
a custom RDT cartridge with embedded sensors that can read a custom immunoassay made with �uorescent
nanoparticles. Apps like Novarum's DX Mobile Reader3 and Albagaia's Hydrosense app4, on the other hand, use
computer vision to analyze lateral �ow RDTs; unfortunately, there is no documentation about their algorithms or
performance because they are proprietary apps. Regardless, these products are catered to speci�c RDT brands, so
the underlying software can rely on design-speci�c features to interpret those RDTs. Our approach is unique in
that we aim to accommodate new RDT designs with a single template image and metadata, which is signi�cantly
less overhead than the large image datasets that would be needed to support a machine learning approach.
Our prior work [45] demonstrates the �rst step we took towards supporting RDT interpretation: a smartphone
app that uses real-time image processing to ensure high-quality image capture. We have since improved upon
RDTScan in a few ways, including a better method for RDT detection and additional quality assurance methods
for blood and glare detection, �ducial tracking, and color-aware line interpretation. We also rigorously evaluate
our automatic result interpretation algorithm across RDTs, analyte concentrations, smartphone devices, and
lighting conditions through both an in-lab evaluation and two case studies.

2.3 Guided Media Capture
Whether a person is taking a picture of an RDT or another object, post-processing can only do so much to improve
the quality of a poorly captured image. In light of this issue, researchers have explored ways of introducing
real-time guidance for media capture in various domains. NudgeCam [6] leverages the smartphone's inertial
sensors to track the camera's stability and orientation. NudgeCam also assesses the video content itself, using
real-time image processing to check the overall brightness of the scene and to detect faces. EasySnap [26, 55]
provides text-to-speech audio cues to help blind and low-vision photographers take well-framed pictures. For
pictures involving people, EasySnap uses face detection to continuously monitor the size and position of the

6http://�o.com/
7https://www.ellumehealth.com/
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subject's face in the photo. For pictures involving objects, the photographer can walk up to a target object so that
EasySnap can register its visual features; once the object is registered, the photographer can move away from the
object and EasySnap ensures that the object remains in view.

Guided image capture has also been created for speci�c object categories. One notable example is bank check
recognition for online banking8,9. To the best of our knowledge, these apps rely on optical character recognition
to localize the consistent features of the bank check (e.g., routing number, check ID) and use those regions to infer
the remaining contents [24]. Because countries have unique bank check formats, companies often develop one
system per country [17, 18], which limits generalizability. Chen et al. [8] created an app called SmartDCap to help
people scan paper documents with a smartphone. SmartDCap continuously checks the framing and sharpness of
the document, consolidating these metrics into a score that is shown to the end-user along with audio feedback.

RDTScan builds upon these developments with a speci�c focus on RDTs. RDTScan performs the RDT-speci�c
task of result interpretation while being con�gurable to a variety of RDT designs. RDTScan also provides real-time,
human-readable feedback so that users can capture high-quality photographs of their RDTs and maximize the
likelihood of correct interpretation.

3 RDTSCAN DESIGN
In this section, we �rst introduce the standards and terminology for lateral �ow RDTs�the speci�c subgroup of
RDTs that this work addresses. We then use this vocabulary to describe the RDTScan system. Throughout this
section, we refer to the HLS (hue-saturation-lightness) color space, which is an alternate image representation to
the standard RGB (red-green-blue). For our purposes, the HLS color space is de�ned as follows: H2 [0, 179], L2
[0, 255], S2 [0, 255].

3.1 Standards and Terminology
In a typical lateral �ow test, a liquid biological sample migrates across a strip via capillary �ow. The sample
�rst passes over a conjugate pad that holds the particles needed to create the colorimetric output (e.g., colloidal
gold, latex) and then over zones that immobilize a target antigen, antibody, or protein. As more of the target is
immobilized, visible colored lines appear to the end-user.

Lateral �ow RDTs come in a variety of form factors, the two most common beingcassettesanddipsticks. RDT
cassettes are activated by putting a liquid biological sample in the sample well and then adding a bu�er solution to
the bu�er well. RDT dipsticks are activated by mixing a biological sample with a bu�er solution in a test tube and
then dipping the strip into the tube. In this work, we focus our attention on the two RDTs shown in Figure 1: (1)
AccessBio's CareStart Malaria Pf/Pv test10, an RDT cassette that analyzes whole blood; and (2) Quidel's QuickVue
In�uenza A+B test11, an RDT dipstick that analyzes a nasal swab specimen.

An RDT's results appears in theresult window�the thin rectangular region where the immunoassay itself is
exposed to the user. Whenever an RDT has been activated properly, itscontrol linewill be visible to the user. Any
other lines in its result window, calledtest lines, indicate the presence of a target analyte. The intensity of the test
lines are a function of the biological sample's analyte concentration; the higher the load, the more intense the
test lines will appear. The control line, on the other hand, is typically intense as long as the user administered the
RDT properly.

Lateral �ow RDTs can vary by more than just their form factor. RDTs can have one or many test lines depending
on how many strains of the same pathogen they can detect. Going from left to right in Figure 1, the CareStart
RDT can show a control line and then two lines indicating the presence of di�erent malaria parasites (Plasmodium

8https://play.google.com/store/apps/details?id=com.wf.wellsfargomobile&hl=en_US
9https://play.google.com/store/apps/details?id=com.infonow.bofa&hl=en_US

10http://www.accessbio.net/eng/products/products01_02.asp
11https://www.quidel.com/immunoassays/rapid-in�uenza-tests/quickvue-in�uenza-test
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