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Figure 1: ProxiCycle leverages a dual proximity sensor design to retroft and empower existing bike handlebars with the 
capacity to passively capture distance of passing cars during overtaking events. This data, when aggregated across many users, 
can provide useful insight into the safety of the road network without depending on users self-reporting. 
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Abstract 
Active transportation is a valuable tool to prevent some of the 
most common causes of mortality worldwide, but is severely un-
derutilized. The primary factors preventing cyclist adoption are 
safety concerns, specifcally, the fear of collision from automobiles. 
One solution to address this concern is to direct cyclists to known 
safe routes to minimize risk and stress, thus making cycling more 
approachable. However, few localized safety priors are available, 
hindering safety based routing. Specifcally, road user behavior 
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is unknown. To address this issue, we develop a novel handlebar 
attachment to passively monitor the proximity of passing cars as a 
an indicator of cycling safety along historically traveled routes. We 
deploy this sensor with 15 experienced cyclists in a 2 month longi-
tudinal study to source a citywide map of car passing distance. We 
then compare this signal to both historic collisions and perceived 
safety reported by experienced and inexperienced cyclists. 

CCS Concepts 
• Computer systems organization → Embedded systems; • 
Human-centered computing → Mobile computing; Mobile 
devices; Smartphones; Ambient intelligence. 
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1 Introduction 
Cycling is a form of active transport which ofers well known health 
and environmental benefts. In many industrialized nations the 
vast majority of adults do not meet physical activity guidelines to 
prevent chronic and fatal diseases such as cardiovascular disease or 
metabolic syndrome [73] which are responsible for the majority of 
mortality worldwide (approximately 35% of global fatalities [70]). 
Regular cycling and other forms of active transport have been 
shown to lower risk for cardiovascular disease, obesity, diabetes, 
some cancers, and even psychological disorders, demonstrating just 
some of the many health benefts [38, 45, 73]. 

Cycling as a mode of transport also has similarly positive im-
pacts on environmental sustainability. For example, if the global 
population leveraged cycling for 2.6 kilometers (1.6 miles) a day 
(the current average in the Netherlands), global emissions from 
passenger vehicles would drop by 20% [8]. This is signifcant as 
transportation by personal passenger car is repeatedly found to be 
the largest single contributor to transportation sector’s greenhouse 
gas (GHG) emissions [2] with the transportation sector being the 
largest portion of total GHG emissions worldwide [2, 32]. This mo-
tivates mode switching from car-based to cycling (or other active 
transit like walking or public transport) as one of the most direct 
approaches an individual can take to better their own health and 
reduce their environmental impact. The United Nations highlights 
this in goal 11 of "17 Sustainable Development Goals to combat 
climate change by 2030", which states improving the safety and 
broadening access to cycling (especially for vulnerable users such 
as women, children, and people with disabilities) as a primary con-
tributor to sustainability [56, 60]. 

In order for populations to reap the economic, environmental, 
and health benefts of cycling, the majority of people need to feel 
safe doing it. Unfortunately, many people do not make this switch. 
For example, in the US alone, cycling trips make up less than 1% 

of all daily trips (for reference the leading country in cycling, the 
Netherlands, sees 25% of all trips including errands and commuting 
made by bicycle and 22% made on foot) [40]. Investigation into 
factors preventing cycling amongst Americans reveal that perceived 
safety, that is, how safe individuals feels irrespective of empirical 
measures of safety, is the main deterrent to the adoption of cycling, 
and specifcally, the fear of injury or death due to collisions with 
cars [39, 60]. This belief is not unfounded as every year ≈ 41,000 
cyclists die from road trafc crashes worldwide [60]. This number 
is disproportionately large when compared to total cycling trips. 
For example, in the UK in 2019, 6% of all road fatalities were people 
cycling despite cycling representing just 1% of all distance travelled 
and 2% of trips made. 

Growing the cycling population is most directly achieved through 
modifying roadways to improve safety by separate cyclists from 
automobiles. For example, in Seville (Spain) the cycling popula-
tion grew by 435% in one year – the same year the city expanded 
the protected bike lane network from 12 kilometers (7.5 miles) to 
151 kilometers (94 miles) [49]. The addition of bicycle infrastruc-
ture indicates increased safety, which has been shown to be the 
deciding factor for many people adopting cycling [67]. However, 
changing the built environment takes time and political investment. 
So what about routes which do not yet have dedicated bike infras-
tructure? While more structural change is needed to make existing 
routes safer, one way cyclists can have immediately control over the 
safety of their cycling experience is to ride on known-to-be safer 
roads. Many experienced cyclists already do this is by developing 
their own preferred routes, defned by Kevin Lynch as mental-maps 
[47, 48] , by learning safety cues through trial and error. However, 
this approach is highly personal and developed through prolonged 
exposure to safety risks from riding on unsafe roads – something 
that many novice cyclists are not willing to do (i.e., explore-exploit 
dilemma). Instead of asking every cyclist to take on this up-front 
risk, a more accessible approach could be to aggregate existing 
knowledge of perceived safety captured by experienced cyclists 
and systematically communicate it to novice cyclists to help navi-
gate them on safer and more comfortable routes as soon as their 
frst ride. This can both mitigate safety risk by directing cyclists 
on safer routes and can lower the barrier of entry to many new 
cyclists, which can have further compounding efects on safety 
due to the principle of Safety in Numbers [31]. This measure of 
perceived safety, also referred to as level of stress (LOS) or level 
of trafc stress (LTS), [68] has been shown to infuence people’s 
decision to cycle over other modes, as well as increase comfort 
while riding [42, 67]. The perception of safety has a particularly 
strong impact on cycling adoption amongst parents and children 
[12, 16]. Prior work has called out a need for better quantitative 
measures of cycling perceived safety directly as a primary approach 
to promote cycling [18, 25, 26, 66]. 

However, existing systems for mapping safety and perceived 
safety are limited. For example, safety is measured primarily through 
historic bike collisions which are sparse and slow to refect infras-
tructure changes [7]. Safety navigation therefore often defaults 
to simply refecting the existence of bicycle infrastructure or lane 
width [20], lacking any further insight into other factors infuencing 
safety or cyclist stress [48]. Observational studies or cyclist surveys 
aim to improve data quality [18], but like most survey methods, 
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sufers from low coverage and high degree of aggregation [18, 26]. 
Platforms like Strava [80] have improved representativeness and 
granularity of cycling trafc data by involving citizens in open 
cycling data collection, but this paradigm has not yet been applied 
to safety [61]. Traditional car-based road safety literature addresses 
this using collision surrogates which are measurable events which 
are not, but correlate to, collisions such as near misses [44], but 
currently no scalable analog exists for bikes. Such a measure could 
serve as an indicator of collisions and therefore an indicator of 
empirical cycling safety. The current state of the art for sourcing 
bicycle near miss data is manually labeled video footage from con-
stantly recording cameras such as the 100 Cyclist Project [46] or 
self-reporting through ad hoc web-portals like UpRide [1]. While 
these systems promise to leverage the scale of crowdsourced data 
to identify hotspots, they rely on manual reporting which does not 
scale. This is on top of the fact that cycling collisions themselves 
are already under-reported [22]. Not only is this tedious for users, 
but it is also prone to user bias as cameras do not capture true 
or standardized distance of near misses. Despite their faws, the 
existence of these platforms and their user-bases motivates a more 
scalable bike safety sensing system. 

To this end, we investigate a commonly reported unsafe (and 
uncomfortable) event in which a car overtakes a cyclist too close 
– a so-called “close pass”. A close pass is when drivers overtake a 
cyclist on the road dangerously close, nearly colliding with or side-
swiping the cyclist. In the feld of injury prevention, Heinrich’s 
Triangle proposes that these near-collisions are related to true 
collisions and avoiding them will in turn lead to a reduction in 
more severe collisions [28]. Additionally, these events infuence 
cyclists perceived safety and in turn their willingness to ride [65, 68]. 
Many countries including the US, Germany, Belgium, and soon 
Japan [13, 14, 58, 78, 85] have legal distance margins that cars must 
provide when overtaking a cyclist, further grounding our defnition 
of a close pass as a signal for safety. Over half of all US states have 
laws prohibiting drivers from passing cyclists within 1 meter (3 feet) 
as a safety measure, with as much as 1.5-2 meters common in some 
European countries [14, 58]. Despite this well-defned guideline, 
there is currently no scalable method for sensing and reporting 
where, when, and how severely drivers break these guidelines. To 
address this gap, we investigate the use of a bike mounted proximity 
sensor to automatically identify these close pass events passively 
while cyclists ride to provide a standardized, quantitative, and input-
free method for sourcing a measure of cycling safety across the 
road network. The contributions of this paper are as follows: 

(1) A formative study via a survey of cyclists of varying expertise 
to understand the potential efcacy of empirical safety data 
in facilitating cycling. 

(2) The design of a smart proximity sensing handlebar plug 
and technical validation demonstrating the feasibility of pas-
sively measuring the distance of passing cars as cyclists ride, 
and 

(3) A 2-month longitudinal deployment with 15 local cyclists 
to develop an aggregate map of observed close passes as 
a measure of cyclist safety which we then validate against 
historic collision data and perceived safety surveys. 

ProxiCycle advances the line of inquiry on bicycle safety across 
the road network, motivated by the current lack existing approaches 
for measuring bicycle safety in a standardized manner at scale. 
We draw on traditional automotive collision surrogate literature 
[44] and existing bicycle crowdsourcing systems [10, 23, 80] when 
designing ProxiCycle to be scalable, low-cost, fully passive, and 
easy to deploy. Our system contributes to the growing feld of smart 
active transportation and bicycle HCI [3, 15, 17, 51, 52, 63, 66, 69, 75]. 

2 Related Work 
In this section, we will discuss the prior work in traditional safety 
sensing through collision surrogates and technology for urban 
mobility. 

2.1 Traditional Collision Surrogates 
Traditional road safety literature addresses the scarcity of historic 
collision data through collision surrogates which are measurable 
events which correlate highly with or even predict collisions. Some 
examples of existing collisions surrogates include Near Misses– 
when vehicles nearly but do not collide– which can be extracted 
from trafc camera footage [74] or self-reported on crowdsourcing 
platforms like UpRide [1] as well as hard-braking events–when a 
vehicle stops abruptly– which can be detected by accelerometers 
either built into or coupled to cars (i.e., smartphone mounted on 
the dashboard) [44]. Similar paradigms have been used to to ex-
plore bicycle swerving in response to driver behavior as a potential 
surrogate such as in CycleSense. However, the authors note that 
incident types such as tailgating or close passes may go undetected 
by motion based models as cyclists may not change their motion 
profle due to these dangerous events. Bicycle motion is notably 
prone to false positives due to motion artifacts such as braking 
and riding on uneven terrain as indicated by CycleSense’s reported 
precision of 0.035 [35, 36]. Similarly, Apple Watch’s accelerometer 
based crash detection systems [4] experienced high false positive 
rates due to the indirectness of the surrogate signal. For example, 
in January 2023, Apple’s crash detection system triggered 134 false 
emergency calls in Hida Japan’s mountain region (more than 14% 
of all emergency dispatch calls) reportedly due to iPhone 14s trig-
gering while user’s were skiing [57]. These false positives may be 
mitigated by deploying more accurate sensing systems which either: 
(1) include context signals to identify situations which can trigger 
false positives; or (2) leverage sensors which measure events which 
are more directly associated with the incident being detected. 

2.2 Augmented Cyclist Perception 
Prior work has also explored novel sensing approaches for sensing 
around the cyclist to extend their perception. For example, Cycle-
Guard leverages a smartphone sonar attachment to detect and alert 
riders of right-hook interactions at intersections–when a driver 
cuts-of a cyclist while taking a right hand turn [33]. HindSight 
leverages a 360 degree camera mounted on a cyclist’s helmet along 
with a bone conductance speaker to provide sonifed feedback to 
extend spatial awareness beyond the capacity of human biology 
[76]. Similarly, Velo.ai launched an AI powered tail light camera for 
identifying approaching vehicles [83], but cannot measure proxim-
ity of passing cars directly. The Garmin Varia tail light radar [21] 
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addresses this by leveraging approach distance vehicles from the 
rear, but does not measure the passing distance during overtaking 
events. 

While these systems can identify approaching vehicles and can 
communicate this information to riders through alerts, it is un-
clear whether these alerts arrive within the critical time window, 
allowing riders to take evasive action. Specifcally, vehicle operators 
have a perception-response time of 1.6 seconds before they can be 
reasonably expected to respond to visual feedback [59]. While this 
may not seem like a long time, the average cyclist rides at approxi-
mately 9-15 mph [37] with cars typically passing 10-15 mph faster. 
This means a feedback system would need to detect approaching 
vehicles over 10 meters away. At such long distances, it may not be 
possible to predict whether a car will pass too close or provide a safe 
amount of space, potentially rendering such an alert useless. They 
can also be potentially distracting or sources of stress which has 
been shown to further impede cyclist safety [50, 71]. Furthermore, 
camera and radar based systems like this can be expensive (Velo.ai 
at $400 and Garmin Varia at $200 USD respectively), making it 
unlikely for such a system to scale enough to impact the safety of 
the broader population such as novice cyclists which have the most 
to gain from safety technology. 

2.3 Crowdsourcing and Passively Sensing City 
Scale Informatics 

Prior work has addressed the need for scaling data to population 
levels with crowdsourcing or passive sensing to map the build en-
vironment similar to how cyclists build up mental-map of safety 
through experience and exploration [48]. However, by leveraging 
sensing or crowdsourcing, these maps can be aggregated across 
the population and shared with new users who would previously 
need to gather this information themselves. For example, Project 
Sidewalk combines crowdsourced labels and existing Google Street 
View (GSV) images to identify sidewalk accessibility issues to facil-
itate better navigation and awareness around sidewalk accessibility 
hazards [27, 43, 72]. crowdsourcing alongside GSV has been used 
for other mapping task such as mapping street level objects [54] or 
even perceived beauty of the built environment [64] to improve city 
scale monitoring and navigation. Alternative signals such as geo-
located social media posts have been used to map urban well-being 
[62]. Prior work has also demonstrated the feasibility of deploying 
passive sensing for sourcing entirely new datasets such as city-wide 
air quality by mounting sensors on vehicles like garbage trucks or 
passenger cars [5, 6, 55]. Similarly, passively monitored GPS data 
from smartphones has been used to naturallistically identify disease 
spread hot spots or infuences of the built environment on people’s 
health [53, 81]. 

We draw on this body of city scale mapping work to design our 
system which address the unique gap in existing bicycle technol-
ogy for sensing collision surrogates which is: inexpensive, easy to 
manufacture, distribute, and deploy, and is unobtrusive and fully 
passive. ProxiCycle is therefore positioned as a “plug-and-play” 
smart handlebar plug which is inserted and then forgotten about 
while continuously recording safety metrics across the population 
of cyclists, thus allowing safer routes to emerge in the data natural-
istically. 

3 Formative Study 
We conducted a brief formative study through a locally distributed 
fully anonymous IRB approved survey to understand the potential 
afordances of a map of cycling safety. This survey was designed to 
answer the following questions: (1) what do cyclists consider when 
making the choice of whether and where to cycle, (2) how might a 
map of perceived safety impact these choices, and (3) do answers 
to these questions difer across cyclists of varying experience? 

3.1 Survey Structure 
We recruited survey participants through advertisement within 
the university, local neighborhood newsletters, social media mes-
saging, and snowball sampling. After 3 weeks we received 389 
responses. Participants were asked demographics questions and 
then to self-report their experience with cycling on a scale of 1 
= very inexperienced to 7 = very experienced (participants were 
prompted that experience was defned as combination of frequency 
and consistency cycling). We then asked a series of fve questions 
probing their perception of the safety of cycling, what factors infu-
ence their perception, and whether they would leverage knowledge 
of safety across the road network to infuence their choice to cy-
cle more. A full list of survey questions as they appeared in the 
survey is included in the Appendix A. To prioritize recruiting a 
large survey population, we designed the survey to be completed 
quickly utilizing a combination of multiple choice and Likert scale 
questions. Participants were also given an optional short answer 
response for each question to further elaborate on their answer. 

3.2 Survey Responses 
Of the 389 responses, 71% self-reported above average experience 
cycling (experience 5-7 out of 7) indicating our sample population 
tends towards experienced cyclists. We discuss responses to each 
question in turn below. In the following discussion we provide 
quotes from the open response questions along with the survey 
participant ID and their self-reported cycling experience rating. 

Perceived Danger of Cycling: The mean response was 3.61 out 
of 5 with less experienced riders (experience 1-3 out of 7) ranking 
cycling as more dangerous than more experienced cyclists (experi-
ence 4-7 out of 7). Less experienced riders (experience 3 out of 7) 
ranking it the highest at 3.91. These results are illustrated in Figure 
2. About a quarter of responses used the open response section 
to elaborate that cycling itself is not dangerous but rather having 
to share the road with cars is. One participant said "the danger 
is outside of my control. My biking is safe, it’s others that make it 
dangerous." (S27 6/7). Other respondents shared similar sentiments 
that: "The danger from cycling comes from cars." (S5 6/7), and "Cy-
cling as a mode of transit is very safe. Trafc is not safe but that is 
not cycling’s problem" (S165 7/7). Some participants even brought 
up the varying safety across the road network as a result of road-
specifc infrastructure and driver behavior – a key motivation for 
this work. One participant said "depends on route/infrastructure, and 
how accustomed drivers are to being around bikes" (S35 7/7), while 
another mentioned "I work very hard to avoid high trafc volumes 
and high speed [roads], and because of that I feel mostly safe. During 
most trips, however, I have to face at least one unsafe segment or 
intersection." (S122 7/7). Some participants went further and noted 
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Figure 2: Three grouped histograms showing the count of 
responses for the three core survey questions, grouped by 
the self-reported experience level of respondent on a 7-point 
Likert scale (from 1 = very inexperienced to 7 = very experi-
enced). The mean and standard deviation for each question 
by experience level are shown to the right. The histograms 
show, from top to bottom, the respondent’s perceived dan-
ger of cycling, their likelihood to use a mapping application 
which communicates variable safety across the road network, 
and their likelihood to increase their utilization of cycling 
for transportation as a result of this mapping tool. 

that knowledge of varying safety across the road network can help 
improve their experience cycling. One notes, "Knowledge of streets 
and trafc patterns is essential, but once you have a familiar and well 
considered route, it is very safe" (S245 7/7), and another says "You do 
have to know which streets to ride on and ride defensively" (S95 7/7). 
Another participant highlights the frustration of feeling forced to 
do this legwork, motivating a platform to share this information 
across the cycling population: "The single worst part about cycling 
here is [those who ride] bike or walk either have to research their route 
or risk being thrown into active trafc." (S223 3/7) Participants like 
this directly cite the barrier of entry to novice cyclists. These results 
indicate that less experienced cyclists perceive cycling as more dan-
gerous and afrm our expectation that experienced cyclists may 
ride on a safer road network by leveraging prior knowledge to 
avoid dangerous streets (i.e., mental maps accumulated through 
experience) – something that we aim to share with the broader 
cycling population. 

Ranked factors encouraging and discouraging cycling: Next, 
participants were asked to rank factors which encourage or dis-
courage cycling. The ranking stratifed by respondent’s cycling 
experience is shown in Figure 3. Among the factors which encour-
age cycling, access to infrastructure and safety from trafc were 

Figure 3: Two grouped histograms showing the ranking of 
infuence (from 1 being lowest to 5 being highest) for each 
factor encouraging (top) and discouraging (bottom) respon-
dents from cycling. Each histogram shows the total number 
of respondents who assigned each rank to each factor. The 
factors are sorted in order of weighted average rank from 
lowest (left) to highest (right) infuence. 

ranked most highly. Among factors which prevent cycling, danger 
from cars was ranked most highly by a signifcant margin across 
all experience levels. A few participants cited personal experiences 
with close-calls or collisions which have since detured them from 
cycling "having had plenty of close calls with inattentive drivers I 
have little interest in riding on roads, or even unprotected bike lanes" 
(S340 4/7). This result indicates that confict with cars is a signifcant 
factor preventing cyclist adoption. 

Likelihood to use safety map and perceived efect on cy-
cling: Respondents indicated they would be very likely to use a 
safety based navigation map with an average response of 4.36 out 
of 5. Those with intermediate levels of cycling (3-5 out of 7) were 
most likely to use it. These results are illustrated in the top row 
of Figure 2. Finally, when asked how likely they were to increase 
their frequency of cycling given access to this data, Figure 2 shows 
respondents overall were more likely to increase their cycling with 
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a mean response of 3.62 out of 5. The mean response was greatest 
for below average experience (3 out of 7) cyclists at 3.73 which 
intuitively makes sense as the most experienced cyclists may al-
ready cycle at max capacity or feel secure with their "mental map" 
of safety given their increased experience [48]. This intuition is 
reinforced by short-answer responses from expert cyclists (7 out 
of 7) participants who note, "A map will not help me cycle more. I 
already use my own senses and memory and fnd the best routes, even 
for places I’ve never been" (S44 7/7). On the other end, those with 
no experience at all may not have interest in cycling. Though some 
inexperienced cyclists may want to cycle more but feel blocked by 
the complexity of route planning: "Confdence in navigating safe 
cycling routes is my #1 barrier to cycling more. I don’t feel confdent 
that Google Maps or other navigation systems would provide a safe 
route and despite my relatively high awareness of the Seattle bike lane 
system, there is still a prohibitive amount of route planning research 
for casual use" (S365 3/7). Quotes like these demonstrate how expe-
rienced cyclists tend to identify these safer routes through trial and 
error, however, this may not be an option for inexperienced cyclists 
or even some experts who are not willing to make the safety trade 
of by cycling unfamiliar territory [48]. This is directly called out 
by a novice cyclists (1 out of 7) who says "My iPhone and the Maps 
app fundamentally changed riding transit for me, an always up to 
date bike map with honest info would be amazing" (S146 1/7). That 
being said, some expert cyclists noted this may still be useful in 
unfamiliar environments "I know my way around my home well, 
but a map of that type would help in places I don’t know as well or 
am new too" (S139 6/7). These fndings further motivate ProxiCycle 
by identifying that access to this quantifed measure of safety is 
useful to cyclists of all levels, but specifcally can make cycling 
more approachable by increasing the likelihood of cycling among 
less experienced riders. 

4 System Design 
In this section we will discuss our design considerations when 
building ProxiCycle as well as the physical and software implemen-
tation. We fnish this section with a brief road map of the study 
design from technical evaluation, to deployment, and fnally spatial 
analysis of the crowdsourced map of close passes. 

4.1 Design Consideration for a Collision 
Surrogate Sensing System 

Our goal with this work is to provide a scalable measure of safety 
across the road network which can be used to navigate cyclists 
on safer routes, in turn lowering the barrier of entry to cycling 
and growing the cycling population. Following traditional injury 
prevention and collision surrogates research [28], we designed 
ProxiCycle to measure safety passively as users ride through the 
lens of close passes as a potential collision surrogate. A strong 
collision surrogate will occur much more frequently than actual 
collisions and represent not just the most severe collisions, but all 
possible collisions, including those which may go unreported. This 
approach addresses the scarcity of safety data as close passes occur 
much more frequently than self-reported near misses and collisions 
and eliminates both user burden and user bias [24]. 

This decision to use close passes as a collision surrogate is sup-
ported by existing work using lane width as an indicator of LTS 
by urban planners as well as legal passing margins referenced in 
Section 1 [29, 68]. We made this decision despite right-hook colli-
sions at intersections making up the majority of reported bicycle 
collisions [30] as studies show that severe under-reporting has in-
troduced strong bias into the types of collisions which are available 
for analysis in favor or the most severe (i.e., those resulting a visit 
to the emergency room) [22]. Conversely, a naturalistic observation 
study of risk-factors of road cycling found that side-swipes (where 
a car collides with a cyclist side-to-side while passing) were the 
most commonly observed hazard, more than twice as common as 
right-hooks (the most commonly reported collision, where a car 
performs a right turn into the cyclists path) and over 10x more 
common than dooring (where a parked car door is opened in the 
path of a cyclist) [34]. Finally, prior work indicates that ride quality 
is improved when riders are most present and less distracted by 
technology [71], so we constrain our design to: (1) work entirely 
automatically with no user input, and (2) for our device to be as 
physically unobtrusive as possible. 

4.2 Proximity Sensing Technology 
The most popular of-the-shelf proximity sensors include: acoustic 
(sonar), radar, stereoscopic video, and light based time-of-fight 
(ToF) sensors. Single lens cameras are sometimes used to estimate 
distance but these approaches are error prone. In this study we 
chose to leverage the ST VL53L8 multizone ToF sensor [79] for 
its small size, interpretable output signal, minimal data overhead 
(on the order of kilobytes per minute) and lack of multipath issues 
(common with both radar and acoustic ranging). The narrow feld-
of-view of ToF sensors allows for the system to easily isolate passing 
cars to the left of the cyclist without interference from other objects 
in trafc (i.e., parked cars to the right or vehicles traveling in front 
of or behind cyclists). 

The VL53L8 works by sending an infrared light pulse (Tx) in a 
single direction and listening for a response (Rx) due to refections 
of surfaces in range and in the feld-of-view. Unlike many ToF 
sensors, the VL53L8 is specifcally designed for outdoor use making 
it more robust to infrared interference from the sun. ToF sensors 
are also not commonly used for automobile proximity sensors so 
there is low risk for interference from other vehicles on the road. 
Anecdotally, we experimented with ultrasonic acoustic ranging 
sensors and found they sufered from interference from existing 
ultrasonic noise on the road. This was likely due to sensors built 
into nearby vehicles for blind spot detection. The small size of data 
produced by the VL53L8 also allows for easy communication over 
I2C and BLE, even at high data rates. These ToF sensors are also 
smaller than parallax based depth camera alternatives, allowing 
for multiple sensors to be integrated onto the same device without 
compromising the unobtrusive form factor and do not sufer from 
self-interference like sonar and radar might. Finally, the data from 
these sensors do not produce visual features and are inherently 
privacy preserving. 
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Figure 4: A) Close up of the fully fabricated Smart Handlebar Plug. B) The placement of the device on the end of a bicycle 
handlebar. C) A circuit diagram illustrating how components are connected. D) A layout of components to fabricate the device. 

4.3 Hardware Design & Placement 
Physical Placement: When designing our custom sensing plat-
form we constrained our sensor’s physical design to: (1) preserve 
limited handlebar real estate, and (2) position the sensor outside the 
rider’s grip position to avoid measurement noise from the rider’s 
hand or arm blocking the sensor. This led us to the fnal design of 
a smart handlebar plug by integrating the proximity sensor into 
the plug used to secure handlebar tape at the end of the handlebar. 
While the current prototype is designed for drop bar handlebars, 
similar designs can exist for fat bars or other handlebar shapes so 
long as the designs maintain an unobstructed feld-of-view. 

Our sensor is mounted by sliding it into the open end of the 
hollow handle bars. This design can be seen in sub-fgure A) and 
B) of Figure 4. Given the small size of these sensors, we were able 
to integrate both a side facing sensor and a rear facing sensor to 
understand the velocity of passing objects based on the order of 
sensor triggers. This design avoids consuming handlebar real estate, 
leaving room for other devices such as bike computers, phones, 
or bells to be mounted on the handlebars1 while also placing the 
sensor as far to the left of the bike as possible, which simultaneously 
increases the sensor range with respect to the bike and minimizes 
the likelihood of the rider’s arms interfering with the sensor’s 
feld-of-view. The whole device including 3D printed housing is 
6cm by 4cm by 3cm and was primarily constrained by the 14500 
battery used for this prototype. However, we did not prioritize 
size optimization in this work and the majority of the housing is 

1This proved signifcant in our user-study as the majority of our participants had 
fully instrumented their handlebars leaving no room for additional attachments. This 
design may therefore improve the usability of the device. 

empty space to accommodate future development with additional 
components. The components themselves are 2.7cm by 2.7cm by 
0.9cm and can be further reduced using a custom PCB. 

Hardware Components: The sensor data is captured from 2 
VL53L8 proximity sensors and communicated to a generic micro-
processor (NRF52840) on the Seeed Studio Xiao development board 
over I2C. The Xiao comes complete with a Bluetooth Low-Energy 
(BLE) antenna used to transmit the data to a paired smartphone. 
The system is powered by a 3.7v 1000mAh 14500 LiPo cell battery to 
maximize battery life while continuously collecting raw data. The 
components of the device and block circuit diagram can be seen in 
sub-fgures C) and D) of Figure 4. Each of the VL53L8 sensors in 
continuous mode have a current draw of 40mAh [79] and thus a 
1,000mAh battery will last over 12 hours powering both sensors in 
ideal conditions. This is a reasonable battery life as cyclists often 
use bike lights which typically have < 8 hours battery life. The 
battery capacity, and therefore size, may be signifcantly reduced 
once power optimized for on-device processing and limiting wire-
less data transmission. The Xiao also natively supports power over 
USB-C allowing the device to be powered by external battery packs, 
dynamo motors, e-bike charging ports, or even the smartphone 
itself. The whole system can cost less than $25 to build in house 
using of-the-shelf components which is already an order of magni-
tude cheaper than the closest alternative (i.e., Garmin Varia $200). 
The fabrication cost (i.e., PCB, plastic housing, and assembly) could 
be further reduced with manufacturing at scale. 
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Figure 5: Flow diagram of our signal processing procedure for data recorded using our custom sensor platform for close pass 
event recognition. At each frame of each of the two sensors the system checks if the majority of cells updated agree within 
some threshold � of each other (i.e., most cells update to a similar value at the same time step) to identify sensor events. Then 
the system checks if there is overlap between sensor events from each sensors and logs a close pass if the rear sensor event 
triggers prior to a side sensor event indicating that the passing object has a positive relative velocity with respect to the bike. 

4.4 Signal Processing 
To process the readings we employ a signal processing chain shown 
in Figure 5. The raw data from the VL53L8 sensors are low-resolution 
4x4 frames representing the depth at each of the 16 cells within the 
sensor’s feld-of-view at the time a frame was captured. Each sensor 
samples at 10Hz including BLE transmission delay. To convert this 
raw timeseries data into meaningful sensor events, we frst flter 
out any cells unchanged from the previous frame (which occurs 
when no objects are in range for that cell). We then log a sensor 
events if the majority of cells in the sensor frame agree to the same 
value within a threshold parameter, which we set as 0.2 meter em-
pirically through early experimentation during development. This 
ensures that sensor events are only logged when large objects like 
cars block the sensor’s feld-of-view , i.e., one or more small objects 
like branches or distance pedestrians in the sensor’s feld-of-view 
will not trigger this condition. While there is no guarantee that this 
approach strictly identifes cars, we empirically saw during testing 
that passing cyclists and pedestrians rarely satisfed this condition 
at the typical passing distance due to the wide feld-of-view of the 
VL53L8. The 0.2 meter threshold was used to give a small tolerance 
to natural noise between cell’s measured distances or refections 
of surfaces with modest curves while still maintaining agreement 
between cells. We then log events as a passing event if both the rear 
and side sensors trigger events overlapping in time and the rear 
sensor is triggered frst. This lag in the side sensor indicates that 
an object passing the bike approached from the rear with a positive 
relative velocity with respect to the bike. Events where the rear sen-
sor lags behind the side sensor indicate a negative relative velocity, 
i.e., cyclist passing a static object or slower road user. Since cars can 
pass cyclists with variable velocity, we did not threshold the mag-
nitude of the lag between sensors. This ensures that cars would be 
detected, irrespective of their speed. This relationship is illustrated 
in Figure 5. We then compress the 16 cell ToF sensor timeseries 
signature to a single pass distance using the inner-quantile mean 
(IQM) of the side sensor at each frame and select the minimum IQM 
across the duration of the pass. We then flter out any pass distance 
above that of a large road lane at 3 meters and below 0.2 meters as 
these short distance triggers are due to cyclist hands during grip 
adjustments. We use the legal defnition of a close pass as 1 meter 

and consider sensor events at the 1-3 meter range to be safe passes. 
In practice, we identifed borderline cases where 1.3 meters felt un-
comfortable to our participants, and for the purposes of evaluation, 
we report close pass and borderline close passes (<1.3 meters) as 
positive. This is closer to the most progressive legal passing margin 
in the US at roughly 1.2 meters (4 feet) which was written into law 
the same year this paper was written [11]. 

4.5 Study Road Map 
Figure 6 shows a road map of ProxiCycle evaluation. After com-
pleting hardware development, we conduct a technical evaluation 
in Section 5 to validate the signal processing discussed above in 
Section 4.4. We then conduct a longitudinal deployment which we 
discuss in Section 6 to crowdsource a city-scale dataset of close 
passes. We fnally show that this map of close passes can be used 
to analyze safety across the road network in Section 6.1. 

5 Technical Evaluation 
In this section we conduct two technical evaluations. First, we vali-
date the chosen sensor modality is capable of measuring proximity 
accurately in the specifc handlebar position and context of both 
moving bike and moving cars in multiple weather and ambient light-
ing conditions. This validation is essential to ensure trustworthy 
readings during in-the-wild deployments where it is not feasible to 
collect ground truth distance. Next, we investigate potential sources 
of error in close pass detection through a 7-user IRB approved pilot 
study where we compare triggered sensor events against manually 
reviewed simultaneously captured video footage on unrestricted 
routes. 

5.1 Experiment 1: In Lab Validation 
As a proof-of-concept we investigate the accuracy of the VL53L8 
when mounted on the left stem of the bike handlebars2 for sensing 
the proximity of passing cars through a controlled in-lab experi-
ment. To ensure the results of this experiment most directly refect 

2We note that all user study trials were conducted on roads with right lane driving 
where bike lanes were always right of the nearest trafc lane. We note that this set 
up fails to capture close passes to the right of the cyclist. This system can easily be 
extend to capture both sides by adding a second device. 
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Figure 6: An overview of the study road map. The study begins with a technical elevation to derive the signal processing 
technique using raw sensor data compared to video recordings. The we leverage this model during a longitudinal sensor 
deployment to source GPS located close passes which are used in a spatial analysis of bicycling safety across the traveled routes. 

Figure 7: (Left) The correlation (Pearson’s r of 0.94 and P-
value < 1e-25) between ground truth distance measured man-
ually in pixels from aerial view using reference marker and 
ProxiCycle’s distance readings captured on both sunny and 
rainy days. (Right) A frame from a drone video illustrating 
how ground truth distance was captured using the reference 
marker in frame. 

the real world interaction, we chose to simulate passes with both a 
moving bicycle and moving car. 

We used photogrammetry (i.e., simultaneous video capture) to 
capture a reliably ground truth distance to compare to our sensor 
readings. To do this, we leveraged a 1 meter stick painted alternating 
black and white every 10 centimeters in frame as a visual reference 
of pixel count to distance in our video. We found it was easiest to 
consistently capture space between the bicycle and car from an 
aerial perspective (as opposed to a tripod on the ground in-line with 
the pass). So, we recorded video from a DJI mini 2 drone in hover 
mode directly above to simulated passes. By capturing video of 
both the simulated pass and black and white reference marker, we 
were able to manually map pixel quantity of each 10cm subsection 
of the marker to the real world distance at the 10cm resolution. 
Figure 7 shows the length of the reference marker compared to the 
length of a pass in the same frame. Because there was potential 
for the altitude of the drone to shift during fight, the mapping of 
pixel to distance was recalculated for each pass (though in practice 
it remained relatively constant). A sync gesture visible from both 
the camera and the sensor was performed at the start of each data 
collection. 

By fying the drone at a sufcient altitude and centering the 
location of simulated close passes in frame, we can minimize any 
possible efects from edge distortion (e.g. barrel distortion) due to 
curvature of the lens. It is not essential to use a drone, as a sim-
ilar approach could be replicated using a camera mounted from 
a tall structure such as a building given proper orientation and 
line-of-sight. For all trials both the cyclist and car were moving in 
a straight line to simulate the most common approach of automo-
biles overtaking a cyclist. the car was traveling between 24 and 48 
kilometers per hour. To assess the efects of weather (both lighting 
conditions and precipitation) on sensor readings, we repeated the 
same experimental procedure twice: once on a mostly sunny day 
with few clouds and again on an overcast rainy day. The cloud cover 
on these days were recorded using OKTA scale, a meteorological 
standard metric, and were recorded as OKTA 2 and 8 respectively. 

We captured 42 simulated rectilinear passes at variable distances 
from 0.4 meters to 2.2 meters and found our sensor readings to have 
high correlation with actual distances with an aggregate Pearson’s r 
of 0.94 (0.93 in sun and 0.95 in rain). This relationship is statistically 
signifcant with an aggregate P-value of 1e-25 (1e-13 in sun and 
1e-11 in rain) indicating that the proximity metric captured from 
our smart handlebar plug is highly correlated with the ground truth 
distance with no signifcant variation due to lighting conditions 
or precipitation. These results can be seen in Figure 7 alongside a 
example frame from our ground truth recordings. 

5.2 Experiment 2: In the Wild Pilot Study 
Next we deployed our system in-the-wild with a group of 7 pilot 
riders (each riding their own personal bicycle) in Seattle to evaluate 
the detection accuracy of our system at identifying cars against 
other real-world confounds. We deployed each sensor module in 
conjunction with a GoPro action camera mounted on the handlebars 
pointed perpendicular (left) to the bicycle to record passing objects 
during each user’s ride. In the video we capture all instances of 
passing objects including cars and other large objects which trigger 
our sensing system. A sync gesture visible to both the sensor and 
camera was performed at the start of each ride. The synchronized 
video and sensor feed were manually reviewed and annotated for 
evaluation. 
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Figure 8: (Left) A visualization of the video capture overlaid with processed sensor triggers. (Right) A close up example of the 
lead-lag relationship used to distinguish passing vehicles from instances of the cyclist passing something in the environment. 

Our participants were recruited through social media messaging 
and word of mouth from a local bike commuting community. All 
participants road their own bicycle retroft with our sensor for the 
study. Self-reported experience level of our riders varied with: 4 
cycling a few times a month, 2 cycling multiple times a weekly, and 
1 who cycled multiple times per day. Each user road with our sensor 
and GoPro for 45 minutes to 1.5 hours (limited primarily by the 
GoPro battery life). The GoPro was mounted on the left side of the 
handlebars facing left (i.e. towards passing trafc). The routes were 
not pre-defned to preserve the naturalistic discovery of possible 
sources of error. Riders primarily chose familiar routes during their 
rides. The rides were carried out on diferent days with varying 
weather conditions including light rain, clear skies, and overcast 
skies. All trials were conducted during daylight hours to ensure the 
video feed from the GoPro was interpretable. 

To generate ground truth labels for evaluating ProxiCycle’s per-
formance, the accompanying video footage was manually anno-
tated.3 Because of the lack of ambiguity in these labels, i.e., car 
pass or not, all videos were annotated by a single annotator over 
multiple days in hour long sessions with breaks in between sessions 
to avoid fatigue. Annotations were made by scrubbing through the 
videos one-by-one from start to fnish and recording the timestamps 
where cars passed the cyclist. This was done over two passes. First, 
an initial blind pass, i.e., without access to ProxiCycle sensor data, 
was made to visually annotate every time a passenger automobile, 
i.e., car, truck, bus, etc., passed the cyclist in the footage. Then a sec-
ond pass of each video was made by the same annotator, this time 
with access to the sensor events recorded by our signal processing 
technique defned in Section 4.4 to compare ProxiCycle against 
the annotations from the frst pass. Sensor events which were not 

3While this approach could be scaled up by using object detection models for 
larger evaluations, we opted for a fully manual approach to ensure the highest quality 
labels in this initial validation. 

accompanied by a passing automobile were labeled false positive 
and passing automobiles unaccompanied by a sensor event were 
labeled false negative. These error statistics were binned by the IQM 
of the raw sensor pixels at the time of the event as close (<1 meter), 
borderline (1-1.3 meters), and far (1.3-2 meters) for later evaluation. 
Anything outside the 2 meter range was excluded from evaluation 
due to the context of the problem (greater than the width of road 
lane) and VL53L8’s technical limit (increased error above 2 meters). 
Automobiles which were greater than 1 full lane of separation in 
the video were marked as true negative for this reason. 

For the purposes of evaluating close pass detection, we treated 
both close and borderline passes as positive predictions and pro-
duced a separate evaluation metric for far passes. By this defnition, 
all users experienced at least one close pass during their ride. This 
allows us to evaluate the performance of the system within the 
range of interest of 0 - 1.3 meters while still reporting the evalua-
tion metrics for the full range of the sensors. Interestingly, during 
post-ride questioning, 3 out of 7 users reported experiencing at least 
one close pass while they actually only experienced borderlines 
close passes at 1-1.3 meters. This may indicate that the currently 
accepted legal defnition of a close pass may still be too small com-
pared to the tolerance even experienced riders are willing to accept 
when describing a safe passing distance. The F1-score for close pass 
detection was found to be 0.915 and the F1-score for far passes was 
found to be 0.868. These results are illustrated in Figure 9. 

Of a total of 269 sensor triggers events within the range of inter-
est, we saw only 5 triggers which were not an automobile. While 
already small, this can be further mitigated through aggregation 
in a crowdsourcing setting [19]. Additionally, due to the directness 
of the sensing modality, i.e, physically measuring proximity, these 
errors can can sometimes be interpreted given context. Qualitative 
examination of these errors revealed our errors to be primarily at 
the maximum boundary of the sensor range (close to 2 meters). 
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Figure 9: The classifcation results from detected passing objects for both the close pass and borderline close pass region (sub 
1.3 meters) and the far pass region (between 1.3 and 2 meters) as well as the categories of common sources of error for both 
close and far. 

Interestingly, our processing heuristics were able to correctly flter 
out most pedestrians, other cyclists, bollards, e-scooters, trees, and 
even motorcycles traveling both with and opposite the cyclist. This 
is desirable as these road users are often within the close passing 
margin but do not pose the same level of risk as passenger auto-
mobiles. We found 2 false positives due to static objects to the left 
of the cyclist while riding on footpaths, 1 false positives due to 
bollards on protected bicycle lanes, 1 due to a passing cyclist pass-
ing very close, and 1 due to the a participant making a very sharp 
turn causing the ground to trigger the sensors. In all cases, these 
errors occurred in scenarios which may be identifed by including 
additional sensors. For example, using geographic context from 
GPS to identify riding on bollard protected bike lane or foot path 
where cycling near pedestrians and bollards is most likely to occur, 
and using the smartphone Inertial Measurement Unit (IMU) to flter 
out data during sharp turns. 

6 Longitudinal Deployment Study 
With the sensing system validated, we moved on to study the re-
lationship of close passes with existing measures of safety across 
the road network through a 2 month longitudinal study with 15 
cyclists. During this study participants rode as usual but with Prox-
iCycle installed on their bicycle to crowdsense a city-scale map of 
close passes which we then used to compare against two existing 
measures of cyclist safety: (1) a map of historic bicycle collisions 
provided by the Seattle department of transportation as an empiri-
cal measure of safety, and (2) a map of perceived safety which we 
collected through surveying the general population in Seattle. 

Unlike in Section 5.2 where we recruited from the general popu-
lation of cyclists, we prioritized recruiting cyclists who ride more 
frequently and on highly varied routes in our deployment to max-
imize coverage across the city. So, we recruited through a local 
cycling activist community: Seattle Neighborhood Greenways via 
their monthly email newsletter. As part of our screening survey, we 
asked participants how often they cycled (i.e., daily, multiple times 
a week, once a week, monthly, or more) and for the consistency 
of the routes they rode (i.e., on a scale of 1 to 10, with 1 being as 
varied as possible and 10 being same route every time). After 2 
weeks we received 206 responses from potential participants. More 
than half of our respondents had drop bars on their primary bicycle 

and about a third owned an Android phone. We built 15 sensor 
modules and recruited from the subset of drop bar and android 
users to standardize both our application and physical sensor de-
sign. We sorted respondents in order of self-reported ride frequency 
and route variability and recruited from the top of this list working 
down. This recruitment process resulted in one participant from the 
study in Section 5.2 participating in the longitudinal deployment 
as well. Participants were not compensated and participated purely 
through volunteer interest. 

Each participant received a single ProxiCycle device and a brief 
instruction on how to install the device on their bicycle, connect 
over bluetooth to their phone, and interact with the paired applica-
tion to disconnect and confrm data sharing. Data was periodically 
uploaded to a remote server. Over the next 2 months we recorded 
2050 close passes over 1604 kilometers (1002 miles) traveled over 
240 unique bike rides. The map in Figure 10 A) shows a heat map 
of the density of close and borderline passes recorded across the 
geographic area covered by these rides. At the end of the deploy-
ment, we correlated the locations of these close passes with existing 
measures of cyclist safety in a spatial analysis. 

6.1 Spatial Analysis 
To understand the relationship between close passes and existing 
measures of cyclist safety, we correlated the locations of close passes 
(Figure 10 A) with both a survey of people’s perceived safety at 
diferent points on the road network (Figure 10 B) and historic 
automobile-to-bicycle collisions (Figure 10 C). We discuss these 
evaluations in the following sections. 

6.1.1 Close Passes as an Indicator of Collisions. Recall that colli-
sion surrogates, like our proposed measure of close passes, should 
be spatially collocated with historic collisions but occur more fre-
quently to serve as an indicator of safety within a shorter temporal 
window [24]. To demonstrate the quality of close passes as a colli-
sion surrogate, we compare the locations of recorded close passes 
over our 2 month deployment as a indicator of empirical collision 
recorded and shared publicly by the local department of transporta-
tion in the last 5 years. These spatial signals are shown in Figure 
10 A) and C), respectively. The intentions of this analysis are not to 
claim close passes alone serve as a comprehensive model of risk, 
but that close passes are correlated with existing measures of risk 
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Figure 10: A) shows a heat map of close pass density across the routes traveled by participants during our study. Colored points 
are overlaid at each sensor event trigger including legal far passes, borderline close passes (between 1 meter and 1.3 meters), 
and close passes (less than 1 meter) in green, orange, and red respectively. B) Shows a heat map and points overlaid of survey 
respondent’s perceived safety rating at locations sampled from our participant’s routes. Blue points indicate higher perceived 
safety while red points indicate higher perceived risk. C) Shows a heat map of historic collisions including at least one bicyclist 
and one automobile over the last 5 years within a 200 meter radius of our participant’s routes. Red points representing collision 
locations are overlaid, with those outside the range of our participant’s route plotted as opaque. 

and can be a useful signal for studying and modeling cycling risk 
in the absence of sufcient or current collision data. 

We are only able to analyze locations where we have collected 
data, so we sampled locations across the routes traveled by our cy-
clists every 100 meters and assigned them a label of high risk if there 
was a historic collision within the distance margins within the last 
5 years and low risk otherwise. We then use the presence of close 
passes within the same margin to indicate this risk. We show results 
of distance margins from 100 to 250 meters in Table 1, reporting 
the results for 200 meters inline. We chose to limit the window of 
historic collisions to 5 years to avoid including outdated collisions 
which potentially occurred prior to updated infrastructure, while 
maintaining a large enough window to represent safety across the 
entire road network (i.e, while 10 years of collisions holds more 
statistical power, collisions from 10 years ago may not represent 
the safety of the current road network). We chose to report the 200 
meter distance margin as this encompasses the length of a typical 
block (i.e., distance between two intersections) in the location of 
our study. This resolution allows cyclists to plan deliberate detours 
to avoid collision hotspots. Finer resolutions (shorter than a block) 

may be too small to aford rerouting around hot spots and would 
inevitably be aggregated to a coarser resolution to be useful. 

We found spatial Pearson correlation of close passes and historic 
collisions to be 0.6 with P < 0.0001. We found a precision-recall 
area under curve (PR-AUC) of 0.83 and macro-F1 score of 0.8 at 
estimating the locations of collisions using locations of close passes 
at a 200 meter distance margin. The results across all distance 
margins are shown in Table 1. These results show a signifcant 
correlation between the locations of close passes and collisions, 
indicating that close passes may be a useful collision surrogate in 
the absence of collision data. Additionally, close passes occur at a 
much higher frequency and therefore can provide a more up-to-
date view of safety across the current road network in a shorter 
window of time (2 months vs. 5 years). 

6.1.2 Close Passes as an Indicator of Perceived Safety. While less 
indicative of risk than collisions, people’s perceptions of safety is 
often used in place of collision data to study safety across the road 
network where collision data is sparse or unavailable [65, 68]. We 
surveyed people’s perceptions of safety at the locations with and 
without observed close passes in our study to compare close passes 
as an indicator of perceived safety. 
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In order to collect a measure of perceived safety to compare 
against, we conducted a survey study (N=76, 21 with self-reported 
cycling experience below 4) recruited through snowball sampling 
from the same activist group as our deployment participants. In the 
survey, participants were provided Google Street View (GSV) links 
which visualized locations where close passes had been observed 
during our 2-month deployment and were asked to rate their per-
ception of safety with respect to trafc at each location on a 7-point 
Likert scale (from 1 - very safe to 7 - very unsafe). Additionally, 
we included an equivalent number of locations where no close 
passes were observed during our deployment to get a balanced 
sample of perceived safety across both potentially dangerous and 
potentially safe locations. This resulted in a set of 1027 locations to 
be rated which were subdivided into 27 mini-surveys containing 
50 locations each (half where close passes were observed and half 
where they were not). Each survey participant provided basic de-
mographic information including age, gender, and experience level 
cycling (prompted similarly to Section 3 that experience is defned 
as combination of frequency and consistency cycling), along with 
safety ratings for each location and whether they were familiar 
with the location or not. Some survey participants completed multi-
ple mini-surveys rating more than 50 locations. All locations were 
rated by at least 2 raters allowing for an inter-rater agreement to 
be calculated. We used average of pairwise Cohen’s Kappa across 
all pairs of raters with overlapping locations which we found to 
be 0.42 which is considered "fair to good" by prior studies [9]. The 
results of this survey are illustrated in Figure 10 B). Additionally, 
we found that inexperienced group (i.e., raters with experience less 
than or equal to 4) skews more in favor of assigning unsafe ratings 
to randomly surveyed locations. This follows our expectation that 
less experienced cyclists are less likely to feel safe and are more 
likely to beneft from a map of cyclist safety. This is shown in Fig-
ure 11. As a comparison, Figure 11 also shows the distributions 
of safety ratings assigned by the experience group for locations 
they were familiar or unfamiliar with. The increased overlap in 
the safety ratings assigned between familiarity groups indicates 
that familiarity with the specifc location was less of a factor in 
infuencing the participants assigned safety rating than their own 
experience cycling.4 

After collecting survey responses, we compared the perception 
of safety at each location to the presence of close passes within 
a distance margin. To do this, we considered locations with an 
average perceived safety rating above a 4 as "high risk" and any 
locations less than or equal to 4 as "safe". Because of the limited 
agreement across survey responses and limited quantity of survey 
responses in general, we were unable to generate a correlation with 
signifcance of P<0.05. Despite this, when comparing the locations 
with close passes to the locations with perceived risk, we fnd a 
PR-AUC of 0.85. The results at other distance margins are available 
in Table 1. This indicates that locations where close passes were 
observed are more likely to be perceived as "high risk" on average 
while locations where no close passes were observed are more likely 
to be perceived as "safe". 

4The experience participants were familiar with roughly half (783 of 1617) loca-
tions rated by them. 

Figure 11: (Top) A Kernelized Density Estimate (KDE) show-
ing the distribution of safety ratings assigned by inexperi-
enced (N=21) and experienced (N=55) cyclists. Participants 
were determined to be experienced by a cut-of applied to 
self-reported experience of 4 or more on a 7-point likert 
scale (i.e., participants who self identify as "neutral" to "very 
experienced"). (Bottom) A similar KDE showing the distribu-
tions of safety ratings assigned by experienced cyclists for 
locations which they were and were not familiar with as a 
baseline. 

6.1.3 Perceived Safety as an Indicator of Collisions. For complete-
ness, we correlated our perceived safety survey responses to col-
lisions as a baseline. This results in a PR-AUC of 0.82, indicating 
that close passes are similarly accurate to perceived safety surveys, 
but are signifcantly more scalable with little to no user efort and 
can provide continuous views into road safety as infrastructure 
changes. For example once ProxiCycle is installed, close passes can 
be sourced entirely passively without user input and continuously 
over time while perceived safety requires routine user reporting 
which does not scale. For context, our perceived safety surveys 
required approximately 30 minutes to complete for 50 locations, 
which across 76 users is almost 40 hours of labeling, while Proxi-
Cycle requires only minutes to install. Additionally we found close 
passes measured using ProxiCycle to to have a higher correlation 
with higher signifcance to 5-year collision data than perceived 
safety survey responses. 

6.2 Participant Feedback 
At the end of the deployment we ask all participants to join an 
optional 20-30 minute exit interview. 8 of the 15 participants could 
attend and accepted the interview. These 8 participants accounted 
for nearly 80% of distance traveled during our study. Prior to the 
interview study we shared a custom interactive map visualizing 
each user’s routes and associated close passes to refect on prior 
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to the interview. The interviews were semi-structured and open-
ended, conducted remotely over Zoom while the user’s map was 
screen shared. Each participant was asked to share their experience 
using the sensor as well as their thoughts on the resulting close pass 
hot spots (specifc to their own routes) accumulated over the study. 
Participants were also asked whether they thought the hotpots 
indicated anything about their rides and if so what? We also asked 
them to identify who might beneft from the insight from this 
close pass hot spot map and why? The interviews were conducted 
by a single author who made notes and used Afnity Diagrams 
to generate themes across participants [77]. We quickly reached 
saturation [84] and 3 themes emerged from these interviews. 

6.2.1 Theme 1: Utility to Novice Cyclists, policy makers, and plan-
ners. A common theme across participants was the utility to pri-
marily novice cyclists and potentially policy makers. "Absolutely, 
this would be very informative for people who are new to biking in 
an area and haven’t fgured out their own route preferences yet, es-
pecially in places like Seattle where it’s all about trade of’s like how 
much topography you’re willing to deal with. In order to fnd your 
routes, you need to see objective data and the more data you have 
the better." (P6) Another participant recalls their time as a beginner 
cyclist mapping the city themselves "I would say if I hadn’t ridden 
these routes before, and I saw a map like this, it would impact where I 
might choose to ride... For example, when the bike lane got put up on 
Roy, I literally didn’t know about it so I would ride on Mercer which 
is really not a great place to ride. Programs like Strava where they 
show you where people ride is nice, but it’s not clear if it’s just a race 
or actually people riding" (P2). This raises the importance of safety 
context along with empirical measures of route popularity. Some 
participants noted that close passes may be more indicative of rider 
comfort than true safety: "I think this data would be useful because 
close passes don’t necessarily hurt anyone but they contribute to a 
general feeling of unsafely. There’s right hooks and dooring which 
may be more severe crashes but your data is capturing something that 
impacts more of how people choose to interact with biking" (P5). This 
again highlights the importance of comfort and perceived safety 
on lowering the barriers to cycling adoption. 

6.2.2 Theme 2: Impact of Rider and Driver Behavior on Utility. Most 
participants raised awareness to potential confounds due to their 
own behavior during data collection. For example, participants 
raise concerns of the lane position they ride in leading to closer or 
further passes. "I was actually hit by a car on Roosevelt but since then 
my personal choice has been to take more quiet routes at the expense 
of time. My bike style is very much ride in the middle of the lane. 
My personal data points probably aren’t the most useful, but with 
more data and more riders, the utility of the data might improve" (P4). 
Another participant raises the opposite consideration with their 
data "I am actually more biking of to the side of the lane because 
that’s where I feel safer so that’s why there are fewer close passes than 
expected here." (P3). Both of these participants identifed behaviors 
that may lead to fewer close passes compared to their expectation 
of an average cyclist due to their riding style, despite citing opposite 
factors (i.e., taking up more or less of the lane). Users also noted 
variation in driver behavior across time leading to diferent results. 
"A lot of bad places, no close passes showed up. But I do feel like cars 
were giving me a wider berth. I don’t know if something has changed 

at the beginning of the month or a coincidence of the time. But I was 
hoping the sensor would capture this and it just didn’t happen even 
though it has happened dozens of times over the last few years" (P1). 
Similarly participants noted the time of day impacting the signal. 
P5 and P3 raised the fact that they rode the most dangerous routes 
in the early morning when few cars pass, leading to the illusion of 
safety on this route if time of day is not considered. Finally, some 
participants noted the importance of driver speed to contextualize 
close pass data. "Another thing is the faster I’m going, the less I care 
about cars passing me because they are passing me at a similar speed. 
New cyclists are likely going slower and so it must be much scarier for 
them" (P5). Another participant notes, "Keep in mind that downtown 
things generally move slower so close passes are less scary. In suburban 
roads which are paint only and higher speeds, behavior dynamics are 
diferent. I’m more assertive and take the whole lane here but close 
passes here are much worse due" (P6). This feedback demonstrates 
the importance of looping in temporal and environmental context 
whenever using close passes for downstream analyses. 

6.2.3 Theme 3: Ease of Data Acquisition Making Up For Errors. 
Despite multiple participants raising concerns about potentially 
misleading information, all participants agreed that the data was 
valuable and easy enough to collect to merit using the system. 
"There’s defnitely some improvements but it’s easy enough to do and 
I’m fairly motivated to collect data because I see It as useful" (P5). 
Another notes, "I’d absolutely keep using this. I fnd it pretty easy to 
use and I kind of treat it like my lights. I already charge things and 
take things of my bike when I’m not riding. It kind of fts into my 
routine" (P4). Interestingly, the use of multiple bicycle mounted tools 
is a trait common amongst experienced cyclists, further motivating 
this tool as something experienced cyclists can use to record data 
which can be shared with novice cyclists to propagate expertise 
amongst the community. 

7 Discussion 
In this section we will discuss ideal applications for ProxiCycle 
along with an action plan for scalable adoption. Then we discuss 
the limitations of frst sensing close passes and then utilizing close 
passes for inferring safety across the road network, along with 
opportunities for future work. 

7.1 Application Scenarios 
This work demonstrates the feasibility of deploying ProxiCycle to 
study cycling safety in the absence of historic safety priors and on 
a shorter timescale than existing approaches, enabling quicker and 
more continuous evaluation. 

7.1.1 Routing for Novice Riders and Outreach. We envision a num-
ber of applications which this afords. First and foremost, ProxiCycle 
can be used to bootstrap bicycle safety studies in municipalities 
lacking any records of reported bicycle collisions, perceived safety, 
or rides. Cycling activist groups could deploy ProxiCycle with a 
few riders to estimate safety across the road network which can be 
used to advocate for infrastructure improvements. This signal can 
then be used in navigation applications to direct cyclists on known 
safer routes or can be provided as a map layer for data exploration. 
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Estimating 
Collisions 

Estimating 
Perceived Safety 

Perceived Safety 
Baseline 

Distance 
Resolution 

Corr 
ROC PR 
AUC AUC 

F1 
ROC PR

Corr AUC AUC 
F1 

ROC PR
Corr AUC AUC 

F1 

100m 0.40 0.71 0.63 0.69 – 0.52 0.74 0.49 0.12 0.58 0.62 0.57 
150m 0.51 0.74 0.74 0.75 – 0.52 0.82 0.46 0.15 0.60 0.76 0.56 
200m 0.60 0.79 0.83 0.80 – 0.53 0.85 0.46 – 0.60 0.82 0.53 
250m 0.71 0.85 0.87 0.84 – 0.52 0.88 0.44 0.16 0.61 0.88 0.51 

Table 1: A table showing the performance of using locations of close passes to estimate both locations of collisions and perceived 
safety as measures of risk. The last column presents baseline measures of using perceived safety survey responses as the estima-
tor of collision locations. Metrics are shown at diferent distance margins for spatial aggregation to demonstrate performance 
at diferent resolutions. Pearson’s correlation is provided for all comparisons. Correlation is omitted in comparisons with 
P>0.05. F1 score is calculated using Macro-F1. 

These mapping tools could then be used for education and out-
reach to promote cycling as related work [67] and our formative 
study in Section 3 indicate that knowledge of safer routes can be 
the deciding factor for some people on whether to take the frst 
step into cycling. ProxiCycle can also provide useful feedback to 
novice riders on the safety of their chosen routes to expedite the 
development of their mental maps. 

7.1.2 Planning. Additionally, we envision ProxiCycle being use-
ful for A/B testing navigation routes as systems built alongside 
ProxiCycle could suggest alternative routes and automatically mea-
sure the safety across them using the quantity of observed close 
passes on each route in real time. Similarly, data gathered by Prox-
iCycle users before and after infrastructure development can be 
used in empirical statistical analysis to quantify the impact of bicy-
cle related development on bicycle safety. Empirical data like this 
can help support future investment into healthy infrastructure by 
demonstrating its immediate impacts on safety. 

7.1.3 Collision Modeling. Further, since close passes occur much 
more frequently than collisions, they can be used in data-hungry 
analyses which may be infeasible with more scarce collision data 
such as comparing safety across time of day. Similarly, the loca-
tions of close passes could be used to train data-hungry models to 
estimate problematic locations or even predict future risk at scale. 
These models could then be used for more dynamic safety-based 
navigation which accounts for changes in bicycling safety over 
time on shorter timescales that what is possible with collision data. 

7.2 Adoption Plan 
Like any crowdsourcing system, ProxiCycle depends on user adop-
tion. In Section 6 we saw the potential for grassroots neighborhood 
organization to bootstrap adoption. Similarly, much of the original 
location-aware computing work leaned heavily on hobbyist "War-
Drivers" to map wireless networks. [41]. In Section 6.2 we found 
our participants valued contribution to sourcing close pass data 
worth the efort to ride with ProxiCycle. While ProxiCycle devices 
could be built by hobbyist or distributed by activist organizations, 
we also see room for engagement within the private sector through 
distribution from insurance companies or bike-share companies. 
Many organizations from governments to private companies (often 
in collaboration with governments) ofer economic incentives for 

bicycle transportation from discounts at local businesses all the 
way up to e-bicycle purchase rebates5. A similar program could 
exist for distributing ProxiCycle stakeholders with an interest in 
understanding safety (i.e., governments, insurance companies, etc.) 
ofering rebates in return for volunteering to use ProxiCycle on 
rides. 

7.3 Limitations & Future Work 
While this work demonstrates the feasibility of passively crowd-
sourcing close passes as a measure of road safety or comfort, there 
are multiple limitations and opportunities for future work. Pri-
marily, close passes ofer a view into the risk of a certain type 
of collision, so-called "side-swipes", but may not represent near-
collisions of diferent formats such as "dooring" or "right-hook" 
collisions. Analyses utilizing close pass data may therefore beneft 
from additional safety context. Similarly, historic trafc levels were 
unavailable at the time of this analysis, but future studies could 
leverage trafc data to studying the weighted correlation in close 
pass and collision rates with respect to total trips at each location. 
Additionally, since the absence of a close pass does not inherently 
mean 0% risk, this analysis can characterize the stability of close 
pass rates over diferent time windows. 

The performance of close passes as a measure of safety may also 
difer across road type based on bicycle infrastructure treatment, 
road width, and other features. A follow-up analysis could investi-
gate the correlation of close passes with existing safety measures 
across road type and the presence of cycle infrastructure or other 
factors such as time of day or weather conditions. Similarly, addi-
tional sensors could be introduced such as low-resolution cameras 
or microphones to measure qualitative diferences in the types of 
vehicles committing close passes such as size or speed to further 
investigate the severity of close passes at diferent locations, i.e., 
larger and faster vehicles are strictly more dangerous [82]. Finally, 
future studies could incorporate cyclist activity recognition to incor-
porate cyclist behavior context (i.e., lane position or riding speed) 
which may alter the performance of close passes as an efective 
collision surrogate. 

5Anecdotally, one of our participants noted during our interview that their em-
ployer ofers a program which funds a bicycle purchase and routine maintenance for 
the employee if the employee commits to commuting to work at a minimum of twice 
a week 
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8 Conclusion 
In this paper, we presented ProxiCycle, a standardized and scalable 
approach for crowdsourcing a measure of cyclist safety along the 
road network by sensing the proximity of passing cars as a collision 
surrogate. We motivate our approach through a formative study, 
test its technical performance in a controlled environment, and the 
deployed the system in a real-world city-wide longitudinal study 
with 15 users for 2 months. We validated our system’s technical 
performance in both an in-lab and real-world environment and 
demonstrate a high degree of accuracy both at close pass detection 
(<1.3 meter range) and legal pass detection (1.3-3 meter range) with 
F1-scores of 0.915 and 0.868 respectively. We then compare the close 
passes recorded by this system during real-world use against both 
historic bicycle collision data and user-reported perceived safety 
fnding a signifcant Pearson’s correlation of 0.6 in locations of close 
passes in just 2 month of deployment with 5 years of collision data. 
We show that these close passes can estimate empirical cycling 
risk across the road network in the absence of existing historic 
collision and can converge in less time. We believe this work is a 
valuable step in advancing a line of inquiry into bicycle safety by 
demonstrating the feasibility of ProxiCycle as a fully passive and 
easily scalable sensing platform for measuring cycling safety across 
the road network. 
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A Appendix 

A.1 What is your gender? 
(1) Woman 
(2) Man 
(3) Non-Binary 
(4) Prefer not to disclose 
(5) prefer to self-describe (fll in the blank) 

A.2 How old are you? 
(1) <18 
(2) 18 to 24 
(3) 25 to 29 
(4) 30 to 34 
(5) 45 to 54 
(6) 55 to 64 
(7) >65 

A.3 How do you identify? 
(1) American Indian or Alaskan Native 
(2) Asian / Pacifc Islander 
(3) Black or Arfcan American 
(4) Hispanic 
(5) White / Caucasian 
(6) Multiple Ethnicities / Other 

A.4 How would you rate your experience level 
cycling from 1 (no experience cycling) to 7 
(very experienced i.e. cycles regularly)? 

A.5 (Optional) is there anything you would like 
to clarify about your answer to the previous 
question? For example, is all of your 
experience cycling from outside the US? 

A.6 How dangerous do you perceive general 
cycling as a mode of transit (i.e. cycling on 
the road for commuting)? (1 = Very Safe to 7 
= Very Dangerous). 

A.7 (Optional) is there anything you would like 
to clarify about your answer to the previous 
question? 

A.8 Please rank the factors below based on how 
likely they are to 
ENCOURAGE/INFLUENCE you to cycle as a 
mode of transit. It is ok to rank multiple 
the same. (1 = Least important, 3 = Neutral, 
5 = Most important) 

(1) Fitness 
(2) Preferred weather conditions 
(3) Safety from trafc 
(4) Aesthetics of environment along route 
(5) Preferred elevation of route 
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(6) Access to bike infrastructure (i.e. bike lanes, bike storage, 
etc.) 

(7) Safety from crime (i.e. theft, assault, etc.) 

A.9 (Optional) Are there any other factors not 
listed which impact your decision to cycle 
as a mode of transit? 

A.10 Please rank the factors below based on 
how likely they are to 
DISCOURAGE/PREVENT you from cycle 
as a mode of transit. It is ok to rank 
multiple the same. (1 = Least important, 3 
= Neutral, 5 = Most important) 

(1) Getting sweaty 
(2) Weather conditions 
(3) Risk of harassment 
(4) Danger due to car trafc 
(5) Elevation of route 
(6) Lack of infrastructure 
(7) Risk of crime (i.e. theft, assault, etc.) 

A.11 (Optional) Are there any other factors 
which are not listed which prevent you 
from cycling as a mode of transit? 

A.12 if there was a navigation/map application 
which could show you quantifable 
measures of cycling safety at diferent 
locations (like walkscore but for cycling 
safety) and could provide you with the best 
cycling route to minimize danger from 
trafc without compromising other 
aspects such as travel time, how likely 
would you be to use it? (1 = Not likely to 
use it, 5 = Very likely to use it) 

A.13 Would this application make you more 
likely to choose cycling as a mode of 
transit or cycle more often than you 
already do? (1 = Not likely to cycle more 
often, 5 = Very likely to cycle more often). 

A.14 (Optional) Is there anything else you’d like 
to share? Feel free to share anecdotes or 
other factors which infuence your 
decision to cycle or not to cycle. 
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