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Abstract— Remote photoplethysmography (rPPG) is an at-
tractive method for noninvasive, convenient and concomitant
measurement of physiological vital signals. Public benchmark
datasets have served a valuable role in the development of
this technology and improvements in accuracy over recent
years. However, there remain gaps in the public datasets. First,
despite the ubiquity of cameras on mobile devices, there are
few datasets recorded specifically with mobile phone cameras.
Second, most datasets are relatively small and therefore are
limited in diversity, both in appearance (e.g., skin tone), behav-
iors (e.g., motion) and environment (e.g., lighting conditions).
In an effort to help the field advance, we present the Multi-
domain Mobile Video Physiology Dataset (MMPD), comprising
11 hours of recordings from mobile phones of 33 subjects. The
dataset is designed to capture videos with greater representation
across skin tone, body motion, and lighting conditions. MMPD
is comprehensive with eight descriptive labels and can be used
in conjunction with the rPPG-toolbox [1]. The reliability of the
dataset is verified by mainstream unsupervised methods and
neural methods. The GitHub repository of our dataset: https:
//github.com/THU-CS-PI/MMPD_rPPG_dataset.

I. INTRODUCTION
Remote photoplethysmography (rPPG) is an optical tech-

nique for measuring the cardiac pulse, or photoplethysmo-
graph (PPG), via subtle changes in light reflected from the
skin [2]. Unobtrusive measurement of vital signs, such as
heart rate, is a crucial technology for remote health monitoring
and could be particularly useful for screening, and monitoring.
individuals with chronic cardiovascular diseases. However,
the high cost and complicated operation of traditional medical
devices make regular measurements infeasible. While rPPG
offers many benefits, the performance of existing video-
based measurement is often brittle and can be sensitive to
changes in i) appearance (e.g., skin tone), ii) the environment
(e.g., lighting) and iii) activities (e.g., types of body motion).
Research has shown that it is harder to extract pulse signals
from individuals with darker skin tones due to the lower signal-
to-noise ratio in the reflected light [3]. Changes in lighting
can significantly alter the appearance of a person’s face and
make it harder to detect subtle changes in reflectance due to
blood flow [4]. Dim or bright lighting can also lead to under
or overexposure and create unwanted specular reflections,
which can further obscure the signal. Motion artifacts in
videos present severe challenges, and current state-of-the-art
models struggle to generate precise pulse waveforms and
heart rates when people are moving. Most models have not
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been extensively tested when users engage in naturalistic
activities, such as talking or walking [4], [5], [6].

Public benchmark datasets are an extremely valuable
resource to the scientific community; however, all datasets
are finite. In the case of rPPG, existing datasets do not
contain examples that allow researchers to systematically test
models across all the aforementioned dimensions (appearance,
environment and activity). For example, the widely used
UBFC-rPPG [7] dataset primarily includes videos of station-
ary subjects with Fitzpatrick skin types 2-3. The PURE [8]
dataset includes head motions that are relatively unnatural and
it was also collected primarily from subjects with Fitzpatrick
skin types 2-3. Finally, many of the existing public rPPG
datasets were recorded using digital single-lens reflex (DSLR)
cameras or devices from specialist imaging companies. This
is in contrast with the most ubiquitous camera types, namely
smartphone cameras.

To address gaps in existing public rPPG datasets, we
introduce the multi-domain mobile video physiology dataset
(MMPD). Our dataset includes 33 subjects with Fitzpatrick
skin types 3-6, four different lighting conditions (LED-high,
LED-low, incandescent, natural), and four different activities
(stationary, head rotation, talking, and walking). All videos
in MMPD are captured using mobile phones. Our paper
presents the following contributions: 1) we introduce the
MMPD dataset, the first public dataset that includes subjects
with diverse skin types (Fitzpatrick scale of 3-6), different
lighting conditions, and various real-world motion scenarios.
2) we conduct a comprehensive quantitative analysis to
evaluate the performance of existing state-of-the-art neural
and unsupervised signal processing methods on our dataset.
Our goal is to provide researchers with a dataset that enables
the development of algorithms that can handle complex and
realistic scenarios, as well as address bias in camera-based
physiological measurements.

II. RELATED WORKS

There are a number of commonly used rPPG datasets
(PURE [8], MAHNOB-HCI [9], BP4D [10], VIPL-HR [11],
COHFACE [12], UBFC-RPPG [7], MR-NIRP [13], VicarPPG-
2/CleanerPPG [14], Scamps [15]). Some of these datasets
were collected with the explicit purposes of rPPG in mind,
while others were collected for generic physiological and
computer vision research. From these remarkable datasets,
we picked the three most frequently used datasets for analysis
and comparison.

UBFC [7]. The UBFC-RPPG dataset is captured using
a Logitech C920 HD Pro webcam with a resolution of
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TABLE I
DATASET COMPARISON

Dataset Frames Subjects Camera Sensor Skin Tone Motion Lighting Exercise

UBFC 57,420 42 Logitech C920 HD Pro CMS50E % % ! %

PURE 168,120 10 eco274CVGE CMS50E % ! % %

Scamps* 1,296,000 2800 / / ! ! ! %

MMPD 1,188,000 33 Galaxy S22 Ultra HKG-07C+ ! ! ! !

As different datasets contain videos with different durations, size was computed here in terms of the number of video frames. *Scamps is a synthetic dataset
and therefore is not directly comparable to other datasets.

Fig. 1. A visual illustration of our data collection protocol. Video recordings of each participant were collected under different lighting configurations
(blue), activities (S, R, T, W) and before and after exercise (red vs. black box).

640x480 at a frame rate of 30fps. Ground truth PPG data,
including the PPG waveform and heart rate, is obtained using
a CMS50E transmissive pulse oximeter. The subjects are
seated approximately 1 meter away from the camera with
their face visible, and the experiments are conducted indoors
with varying levels of sunlight and indoor lighting. While
the dataset is reliable and widely used as a baseline, it has
limited diversity due to the range of skin tones and motions
represented.

PURE [8]. The PURE database includes 60 one-minute
sequences captured using an eco274CVGE camera at 30fps
with a resolution of 640x480 pixels, and the PPG data is
acquired in parallel by a CMS50E transmissive pulse oximeter
at a sampling rate of 60Hz. The dataset is widely used due
to its diversity of motions, including talking, translation, and
head rotation, but it lacks variety in skin tones, real-world
motion tasks, and lighting conditions.

Scamps [15]. The Scamps dataset provides frame-level
ground-truth labels for PPG, inter-beat intervals, breathing
waveforms, breathing intervals, and 10 facial actions in 2,800
video sequences. Each video is rendered using the corre-
sponding waveforms, action unit intensities, and randomly
sampled appearance properties. Although the dataset has
demonstrated its potential for various applications, models
trained on SCAMPS tend to have poor performance due to
overfitting because of the simplistic nature of the vitals.

III. DATASET

In an effort to create a dataset that captures some of the
diversity and complexity of videos seen in real-world appli-
cations, we recruited subjects from different countries and
conducted experiments under various lighting configurations.
A total of 660 one-minute videos were recorded using a

Samsung Galaxy S22 Ultra, while gold-standard PPG signals
were simultaneously recorded using an HKG-07C+ oximeter.
In this section, we will describe the data collection protocol,
data processing techniques and dataset organization.

A. Data Collection

As previously noted, lighting and motion can greatly affect
the extraction of PPG signals from videos. To further study
these factors, we designed an experiment that simultaneously
collects face videos and finger PPG signals. The experimental
procedure is illustrated in Figure 1, and all the videos were
captured at a distance that allows for touch.

The experiment involved four levels of light intensity and
three types of light sources, including low LED light (100
lumens on the face region), mid-level incandescent light (200
lumens on the face region), high LED light (300 lumens
on the face region), and natural light (varying from 300-
800 lumens intensity on the face region). For motion, we
designed four tasks of varying difficulty, including remaining
stationary while staring at a screen, head rotation, talking
while keeping the head stationary, and taking a selfie video
while holding the phone. In addition, we conducted four
exercises to investigate the impact of physical activity on
stationary scenarios. Subjects were asked to perform high knee
lifts or other strenuous exercises to raise their post-exercise
heart rate before recordings. After all exercises, subjects
would take enough breaks to calm down before taking the
next experiment.

B. Data Processing

To enhance the accessibility and usability of our dataset, we
preprocessed the raw data and converted it into a convenient
MAT file format compatible with both Matlab and Python.



TABLE II
THE RESULTS OF UNSUPERVISED SIGNAL PROCESSING METHODS.

Method ICA [16] POS [17] CHROM [18]
MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE ↓ ρ ↑ MAE↓ RMSE↓ MAPE ↓ ρ ↑

Skin tone
3 8.83 12.24 12.15 0.26 5.76 9.67 8.63 0.48 6.57 10.46 9.64 0.33
4 15.16 19.81 17.60 0.12 9.06 13.51 10.37 0.23 10.57 13.80 12.69 0.15
5 14.42 17.70 20.07 -0.10 12.78 16.69 19.29 -0.03 14.65 18.91 22.29 -0.12
6 17.14 21.52 19.77 -0.01 11.17 15.34 13.63 0.26 12.53 16.47 14.94 0.06

Motion
Stationary 11.48 15.82 15.06 0.16 9.70 13.74 13.35 0.26 10.23 14.23 14.46 0.15

Rotation 11.75 15.88 15.35 0.06 7.50 11.99 10.85 0.40 9.28 14.02 13.10 0.16
Talking 13.14 17.18 16.50 0.20 8.05 12.60 10.87 0.30 9.31 13.51 12.26 0.25

Walking 26.15 30.75 27.43 -0.08 17.05 21.20 18.49 -0.06 17.61 21.07 19.15 -0.12
Light

LED-low 12.20 16.54 15.71 0.03 9.76 14.15 13.41 0.14 10.49 14.84 14.52 0.08
LED-high 11.98 15.90 15.41 0.21 7.26 11.26 10.24 0.45 9.53 13.42 13.25 0.15

Incandescent 12.20 16.48 15.80 0.16 8.24 12.81 11.41 0.35 8.80 13.46 12.06 0.29
Nature 17.21 21.42 19.84 0.19 10.71 14.21 13.20 0.36 12.88 17.04 15.46 0.12

Method GREEN [19] LGI [20] PBV [21]
MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE ↓ ρ ↑ MAE↓ RMSE↓ MAPE ↓ ρ ↑

Skin tone
3 12.37 16.48 16.67 0.15 5.99 9.83 8.10 0.45 7.94 11.36 10.96 0.38
4 23.39 26.27 27.72 0.10 14.43 19.91 16.17 -0.17 15.87 20.50 18.34 -0.01
5 15.22 18.89 20.51 0.17 14.23 18.17 19.84 -0.02 14.62 17.77 20.17 0.08
6 20.59 24.96 23.37 0.13 17.02 22.15 19.28 0.03 17.24 21.38 19.81 0.10

Motion
Stationary 13.33 18.41 16.97 0.16 10.80 15.99 13.61 0.01 10.80 14.40 14.08 0.28

Rotation 16.67 20.48 21.33 0.07 9.38 14.87 12.26 0.15 11.18 16.21 14.64 0.08
Talking 17.16 21.14 21.48 0.06 11.36 16.26 13.87 0.20 13.44 17.43 16.69 0.19

Walking 29.81 34.41 31.56 0.06 25.48 30.24 26.82 0.04 25.66 30.19 27.09 0.08
Light

LED-low 17.12 21.43 21.75 0.17 11.59 16.43 14.53 -0.01 11.91 16.09 15.16 0.11
LED-high 14.71 19.13 18.76 0.08 9.74 14.91 12.46 0.17 13.01 17.22 16.95 0.09

Incandescent 15.33 19.49 19.27 0.06 10.22 15.78 12.75 0.19 10.49 14.76 13.31 0.33
Nature 20.07 24.74 23.19 -0.05 16.29 20.68 18.97 0.19 15.64 19.68 18.39 0.28

MAE = Mean Absolute Error in HR estimation (Beats/Min), RMSE = Root Mean Square Error in HR estimation (Beats/Min), ρ = Pearson Correlation in
HR estimation.

The videos were filmed at 30 frames per second with
a resolution of 1280x720 pixels but were compressed to
320x240 pixels to facilitate storage and transmission. The
PPG signals were downsampled from 200Hz to 30Hz to match
the frame rate of the videos, resulting in 1800 frames per
video. To enable researchers to explore the potential impact
of various factors on rPPG, we assigned multiple labels, such
as skin tone, gender, glasses, hair coverage, and makeup, to
the dataset.

To ensure the synchronization of the videos and ground-
truth PPG waves captured by different devices, we employed
a Logitech Yeti microphone as an intermediary. Prior to
each experiment, we recorded a chirp audio signal on both
devices and then calculated the cross-correlation between
the two recorded audio signals to determine the time delay
between the phone and laptop. The timestamps of the oximeter
were obtained through the USB COM port, allowing us to
synchronize the PPG signals and video signals using two
timestamps.

C. Data Samples

Figure 2 illustrates some samples from MMPD dataset. It
includes Fitzpatrick skin types 3-6, four different lighting
conditions (LED-high, LED-low, incandescent, natural), and
four different activities (stationary, head rotation, talking, and
walking).

IV. RESULT AND DISCUSSION

A. Unsupervised Signal Processing Methods

Six traditional unsupervised learning methods were eval-
uated on our dataset [19], [20], [17], [18], [16], [21]. In
the skin tone comparison, we excluded the exercise, natural
light, and walking conditions to eliminate any confounding
factors and concentrate on the task at hand. Similarly,
the motion comparison experiments excluded the exercise
and natural light conditions, while the light comparison
experiments excluded the exercise and walking conditions.
This approach enabled us to exclude confounding factors and
better understand the unique challenges posed by each task.



TABLE III
BASELINE RESULTS ON THE MMPD DATASETS GENERATED USING THE RPPG-TOOLBOX [1]. FOR THE SUPERVISED METHODS WE SHOW RESULTS

TRAINED ON THE UBFC-RPPG AND PURE.

Training Set UBFC [7] PURE [8]
Testing Set MMPD MMPD

MAE↓ RMSE↓ MAPE↓ ρ ↑ MAE↓ RMSE↓ MAPE ↓ ρ ↑
Skin tone

3 3.60 6.91 5.01 0.76 3.06 6.60 4.06 0.77
4 14.45 20.51 16.23 -0.12 8.94 15.74 9.98 0.25
5 10.06 13.72 14.11 0.45 12.39 16.51 16.74 0.12
6 14.88 20.21 16.85 0.18 15.43 20.98 17.51 0.20

Motion
Stationary 5.34 11.17 6.32 0.56 5.91 11.56 7.13 0.54

Rotation 11.73 16.45 15.14 0.12 8.92 14.99 11.24 0.17
Talking 7.35 12.52 9.07 0.50 8.32 13.71 10.21 0.42

Walking 24.91 29.76 26.24 -0.02 27.21 31.97 28.56 0.03
Light

LED-low 8.33 13.69 10.10 0.44 7.95 13.64 9.46 0.39
LED-high 7.92 13.18 10.14 0.40 7.80 13.37 10.00 0.37

Incandescent 8.18 13.83 10.29 0.37 7.40 13.46 9.12 0.38
Nature 10.41 16.77 12.37 0.36 11.04 17.66 12.52 0.35

MAE = Mean Absolute Error in HR estimation (Beats/Min), RMSE = Root Mean Square Error in HR estimation (Beats/Min), ρ = Pearson Correlation in
HR estimation.

Fig. 2. Sample video frames across multiple domains such as skin tones,
motions and lighting conditions.

As shown in Table 2, for unsupervised method comparison,
the LGI [20] method performed best for relatively simple data
from type 3 skin tone, while the POS [22] method had the best
average performance for all conditions and robustness. For
skin tone comparison, all the methods performed well on the
data of skin type 3. However, for types 4, 5, and 6, most of the

results showed a mean absolute error (MAE) greater than 10,
indicating poor generalizability. For motion comparison, none
of the models performed well for the hardest walking motion,
but each model had its strengths for stationary, rotation, and
talking tasks. For light comparison, there was no significant
difference between the three types of artificial light, and all
models performed poorly under natural light.

B. Supervised Deep Learning Methods

In this paper, we also investigated how a state-of-the-art
supervised neural network performs on MMPD and studied
the influence of skin tone, motion, and light. We used a
pre-trained TS-CAN [23] model which was trained on the
UBFC [7] and PURE [8] datasets. We used the same exclusion
criteria as the evaluation on unsupervised methods.

Table 3 shows the results of the supervised neural network
across different tasks. The results indicate that the neural
network does not generalize well in all scenarios, as it only
performs well on data from skin type 3 and with stationary
tasks. This is because the training data (PURE and UBFC)
only contains subjects in skin types 2-3 and mostly stationary
videos. There is no significant difference between the models
trained on the UBFC[7] and PURE[8] under the improved
training framework of rPPG-toolbox [1].

C. Discussion

The discussion of our findings indicates that the per-
formance of supervised and unsupervised methods varies
depending on the similarity of test data to training data. In
our study, we found that the generalizability of supervised
methods is limited when tested on subjects with skin types
4-6 or under challenging motion and lighting conditions. Con-
versely, unsupervised methods exhibit better generalizability
as they do not rely on training. Our study also revealed that



public rPPG datasets may not adequately represent real-world
challenges encountered in MMPD dataset. Specifically, public
datasets tend to have limited representation of skin types
beyond types 2-3, mostly stationary videos, and uniform
lighting conditions, leading to limited generalizability of
supervised methods.

To improve the quality of data collection, we suggest using
raw mode in the phone camera app to capture subtle changes
in the face and properly positioning the phone. Additionally,
minimizing complex signal processing and properly utilizing
video processing tools such as ffmpeg can improve the quality
of video frames and reduce time delays between the oximeter
and phone. Face alignment and frame padding should also
be considered, given the larger size of faces in mobile phone
videos.

Overall, our study highlights the importance of properly
selecting training and testing data and carefully considering
the real-world challenges and limitations of data collection to
improve the generalizability and accuracy of rPPG methods.

V. CONCLUSIONS
In this paper, we introduce the MMPD dataset, a collection

of over 11 hours of video recording using a mobile phone.
The dataset features subjects of four skin tones, in four
motion conditions, and four lighting conditions, providing a
diverse range of data for the benchmarking rPPG methods.
With eight descriptive labels, the MMPD dataset aims to
address the limitations of existing datasets recorded with
mobile phones, particularly for videos of darker skin types
and real-world motion and lighting tasks. The MMPD
dataset and our evaluation of rPPG methods provide a step
forward in advancing the accuracy and generalizability of
this technology, with the potential to improve healthcare and
other applications.
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