
IDAct: Towards Unobtrusive Recognition of User
Presence and Daily Activities

Hanchuan Li
CSE, University of Washington

Microsoft Corporation
Seattle, USA

hanchuan.li@microsoft.com

Chieh-yih Wan
Intel Corporation

Portland, USA
chieh-yih.wan@intel.com

Rahul C. Shah
Intel Corporation
Santa Clara, USA

rahul.c.shah@intel.com

Alanson P. Sample
CSE, University of Michigan

Ann Arbor, USA
apsample@umich.edu

Shwetak N. Patel
CSE, University of Washington

Seattle, USA
shwetak@cs.washington.edu

Abstract—The Internet of Things (IoT) promises to revolution-
ize the way people interact with their surrounding environment
and the objects within it by creating a ubiquitous network
of physical devices. However, recent advancements have been
focused on creating battery-powered electronics. There remains
a huge gap between the collection of smart devices and the
massive number of everyday physical objects. In this work,
we bridge this gap by enhancing the sensing capabilities of
everyday objects using commercial long-range RFID. We apply
signal processing and machine learning techniques towards its
communication channel parameters to detect the presence of
users and to understand their daily activities. Different from
prior work, our system can adapt to different environments and
objects types. In a naturalistic user study deployed in a home
environment, IDAct detected user presence with an F1 score of
96.7% and recognizes 24 different daily activities with an F1
score of 82.8%.

Index Terms—Activity Recognition; Object Usage Sensing;
Presence Sensing; RFID

I. INTRODUCTION

Advances in cloud computing, mobile computing and em-
bedded systems have enabled rapid adoption of the Internet of
Things. People are now surrounded by a variety of smart devices
in their daily lives. These connected devices lay the foundation
of the IoT, which revolutionized the way people interact with
their surrounding environments and fused applications spaces
such as smart home and city, intelligent transportation, and
connected health care.

Current advancements of the IoT have been heavily relying
on these new and smart electronic devices. It was estimated that
14.2 billion devices will be connected in 2019 [5]. However,
there still remain hundreds of billions of everyday objects
(e.g. clothes, cookware, furniture etc.) that people use on a
daily basis left out of this picture. These objects do not have
embedded electronic pieces to support wireless communication
and it is challenging to enhance their sensing capabilities in an
easy and scalable way. There is an ever-increasing gap between
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Fig. 1. Example IDAct Applications, left: sensing daily activities, e.g. taking
medicine; right: sensing user presence using interference with ambient objects

the smart connected electronics and the massive number of
everyday non-smart objects.

Given the ubiquity of these objects, there are significant
opportunities in enhancing their sensing capabilities and creat-
ing interactive applications around them. Connecting everyday
objects will bring context-awareness into the details of everyday
living, creating a truly immersive IoT experience. Imagine a
world where your pill bottle keeps track of your medication
intake and water glass monitors your hydration level. Even
your yoga mat is aware of your exercises and could adjust
lighting, temperature and background music accordingly.

In this paper, we propose IDAct, a system that enhances the
sensing capabilities of everyday objects in an easy and scalable
way to detect the presence of users and understand their daily
activities. IDAct utilizes passive long-range RFID, However,
different from existing RFID based solutions [12], [13], [19],
our approach does not require extensive training for specific
objects or the sensing environment. The interaction detection
algorithm utilized in IDAct allows it to adapt to different
user and RF environments, lowing its deployment barrier. In
addition, our system supports sensing human presence without
requiring active usage of objects. When compared to existing



wearable solutions [14], [15], [17], IDAct does not require any
user instrumentation. This significantly reduces user burden,
and in turn, helps improve the technology acceptance and
compliance [9].

IDAct opens the door for many IoT sensing applications by
powering a network of physical objects. For example, in a smart
home setting, temperature, humidity, and lighting conditions
can be adjusted according to user location and activities, saving
energy while allowing for customized personal comfort. IDAct
can also enable dietary monitoring or health care applications
by detecting what food users are preparing in the kitchen and
when they are taking medications. In the field of senior care,
automated recognition of daily activities provided by IDAct
can be combined with assisting technology to improve the life
quality for seniors who live alone [3].

We validate our techniques in a naturalistic study deployed in
a home environment. Data from tagged objects were collected
by a single RFID reader as participants performed activities that
they would normally do in their everyday lives (e.g., cooking,
watching TV). We reviewed recorded videos and manually
annotated ground truth to evaluate the effectiveness of IDAct.
In the 26 hours of data collected with 110 objects across
10 participants, our analysis shows that IDAct can detect user
presence with an F1 score of 96.7%, and recognize 24 different
daily activities with an F1 score of 82.8%. Our contributions
in this paper are as follows:
• A fine-grain long-range RFID-based activity recognition

system which could adapt to different RF environments,
users, and object types.

• An algorithm that senses user presence from changes
in the RF environment surrounding each object without
requiring explicit object usage.

• A user study in a natural living environment to quantify
the effectiveness of our system at detecting object usage,
sensing human presence, and recognizing daily activities.

II. RELATED WORK

Automatic means of activity recognition is one of the key
building blocks needed to enable context-aware ubiquitous
computing applications. There is a variety of prior work that
aims to accomplish this goal by wearable or and distributed
sensing leveraging active and passive sensors each with their
own unique strengths and weaknesses.

A. Activity Recognition using Wearable Devices

The objects we utilize in daily living provide rich contextual
information about the activities performed. In recent years, deep
learning techniques have demonstrated promising results in
understanding user’s daily activities using first person cameras
and sensors like IMU [2], [22]. In particular, Castro et al. [2]
presented a deep learning activity recognition system based on
egocentric cameras. This work achieved an accuracy of 83%
classifying 19 daily activities. However, this approach lacks
support for recognizing fine-grained activities (e.g. which dish
is being prepared). In addition, privacy concerns of first-person
visual recordings limit the usability of computer vision systems

in living environments. In general, wearable so+lutions have
the advantage of being mobile which extend the physical space
for activity recognition. However, the increased user burden due
to body-mounted devices limits the technology acceptance and
compliance especially for applications in living environments
[9].

B. Activity Recognition using Sensor Networks

Researchers also explored distributing sensors in the physical
environments for activity recognition. In particular, binary
’state-change’ sensors based on piezo-electric switches has
been studied to detect object usage [18], [20]. Each object is
assigned a wireless sensor that is triggered when the object
is moved to infer daily activities. However, the form factor
and unit cost is still not ideal for sensing user interactions
with everyday objects. In general, techniques based on active
sensor networks demonstrate promising results in activity
recognition, but at the same time limited by their high per
unit cost and the requirement for battery replacement. To
mitigate this challenge, researchers explored integrating a large
number of sensing modalities [10] (infrared, IMU, microphone,
magnetometer, etc.) into a single sensor and demonstrated
recognition of activity at a category level. However, fine-grain
recognition of daily activities requires knowing the instance and
specific identity of the object being manipulated. For example,
sensing medicine intake requires knowing which pill bottle was
picked up among the many similar pill bottles. Knowing the
precise identity of the pill requires higher granular of sensing
capabilities.

C. Activity Recognition using RFID

The small and low-cost nature of passive RFID tags makes
it easy for instrumenting everyday objects. Philipose et al.
developed a glove-based near-field RFID reader that could
identify the read/no-read states of tags attached to objects in
close proximity [16]. Objects held in hands are recognized by
the wrist-worn reader, over time, the usage of these objects
can be utilized to infer higher level activities.

The recent advances in commercially available passive long-
range RFID systems give rise to their popularity in distributed
sensing applications. These systems operate at 900Mhz Ultra-
High Frequency (UHF) ISM band. The RF channel parameters
reported in the Gen 2 UHF RFID readers [6] provides insights
into the state of the tag and its surrounding environments. This
system is previously studied for health and wellness sensing
applications [7], [13], [19], [21]. However, the object usage
sensing methods described in their systems are based solely
on received signal strength (RSSI). In addition to requiring
dense antenna deployment, these prior work require excessive
training for each object, making it a challenge to scale to a
large number of objects. Prior work also explored levering RF
channel parameters to sense user interactions with objects [12]
in forms of motion and touch. This system only requires a
single antenna and a single tag on each object. However, it
was still challenging to adapt to different object types and new
physical environments. Improving upon the prior work, IDAct



Fig. 2. An overview of our activity recognition pipeline: from RF channel
parameters to sensing object usage, detecting user presence and recognizing
daily activities.

Fig. 3. Discontinuity in RSSI and phase samples due to carrier frequency
sweep. (a): RSSI vs. time, (b): Phase vs. time

tackles variations in ambient RF environments using signal
processing and machine learning techniques, which allows it
to adapt to new object types and physical environments after
a easy calibration process. We conducted a study to quantify
our system in presence sensing and activity recognition in the
evaluation section.

III. SYSTEM OVERVIEW

Figure 2 outlines the data flow of our system. We first
describe the back-scattered RF channel parameters utilized in
this work. Then we extract features from those RF channel
parameters to create an object state classifier. We further explore
the correlation between object states and user interactions to
determine object usage. Afterwards, we describe our heuristic
approach for sensing user presence leveraging states of the
object in the surrounding environments. Finally, we discuss
how different granular of user activities can be inferred based
on object usage.

IV. SENSING OBJECT STATES

This section describes our approach to classify four different
states of RFID tags using RF channel parameters. These states
are closely related to object usage events. We pay special
attention to detecting the unintended interference created by
the human body as they move in the ambient environments.
Understanding its difference with intended object motion is
crucial towards detecting user presence and lowering false
positives in activity recognition.

A. Tag States

(a) Moving: Tags under motion is a strong indication of
object usage.
(b) Interfered: RF Interference generated by human motion is
a strong indicator of human presence.

Fig. 4. Raw channel parameters of tag moving and interfered states. (a)
RSSI-motion (b) phase-motion (c) RSSI-interference (d) phase-interference

(c) Still: Having no motion or external interference indicates
that the corresponding object is not being used.
(d) Blocked: RFID reader unable to read tag is likely a result of
occlusion from the human body or objects with high dielectric.

B. RF Signatures

In this section, we describe the set of features we use to
classify different tag states. We utilize Impinj R420 reader in
this work, which give us access to low-level channel parameters
including RSSI and RF phase. Figure 4 is a visualization of
RSSI and phase for a one second period. FCC regulations
require RFID readers in the 915 MHz ISM band to pseudo-
randomly change their transmit frequency in order to minimize
interference with other devices. To satisfy this requirement,
RFID readers frequency sweep across 50 channels from 902
MHz to 928 MHz (in the USA). The changes in carrier
frequency happen at roughly 0.2-second intervals, causing the
discontinuities in RSSI and phase. In the first row (Figure 4a,
4b), the tag is being moved. In the second row (Figure 4c, 4d),
the tag is still but impacted by user moving nearby. When we
compare RSSI of these 2 states to when tags are still (Figure
3a), variations in each channel is dramatically increased. We
use the standard deviation (SD) of the RSSI as one of the
features to differentiate between still and motion/interfered
states.

Feature 1: RSSI SD for each channel frequency (every 0.2
seconds)

RSSI SD = SD(RSSI(channel == channel(X))) (1)

When we compare the phase of moving and interfered states
(Figure 4b, 4d) to motionless tags (Figure 3b), the phase
difference within each channel is dramatically increased (in
each 0.2 second intervals). This observation is described in
feature 2

Feature 2: Phase difference for any channel frequency

Phase Di f = |Phase(channel == channel(X))(end)

−Phase(channel == channel(X))(1)|



Fig. 5. Phase-channel relation (a) linear relation when still (b) non-linear
under motion

For a passive RFID system, the primary signal path where
most power is transmitted is the line-of-sight path. Under most
conditions, there will be at least one, if not more, multipath
reflections. The motion of the object will directly change
the length of all signal paths, which result in variations of
RF channel parameters such as RSSI and phase. Interference
created by human proximity will either attenuate the signal,
detune the tag, or create additional multipath trajectories
between the tag and the reader. These changes will also
contribute to the variations in RF channel parameters. When
we compare tag interference (Figure 4c, 4d) with tag motion
(Figure 4a, 4b), we can see that the RF phase is much
more sensitive to motion when compared to interference. Our
hypothesis is that when the human body is interfering the
signal path, the presence of the body will attenuate the signal
or detune the tag, which leads to higher variability in the RSSI
of the back-scattered signal. However, the phase is independent
of signal attenuation and primarily determined by the length
of the line-of-sight path, so it remains relatively stable. We
calculate the ratio between the variation of the two signals
above to characterize this observation.

Feature 3: Ratio between phase difference and RSSI variation

Ratio = Phase Di f/RSSI SD (2)

When the tag is blocked, the reader cannot communicate
with the tag. For any given time t0 to t1, blocked states can be
determined by whether the reader receives any readings from
the tag as described by equation 3.

Feature 4: Detection of tag presence (covered state)

presence = isempty(Channel Parameters(t0− t1)) (3)

In addition to time domain features, we also explore the rela-
tionship between channel parameters and their corresponding
transmit frequencies. We visualize the relationship between the
channel and phase signals. In Figure 5a, the tag is motionless
and generates phase samples which linearly correlate with
the channel frequency. This observation is consistent with
the relationship expressed in Equation 2. Motion (Figure 5b)
creates variation in the tag - reader distance that breaks this
linear relation. The difference between the 2 states can be
represented by the root mean square error of linear regression
between the channel and phase, where the error of motion
states will be much higher when compared to errors of still
states. We capture this observation in Feature 5.

Feature 5: RMS error of phase-channel linear regression.

Fig. 6. RSSI variations of 2 tags attached to two objects of different materials
at 2 different locations

C. Object State Classifier

One challenge in detecting object state is that channel
parameters may exhibit different patterns when attached to
objects with different materials. For example, an object with
a high dielectric constant may detune the tag, increasing the
noise level in the reflected signal. In addition, tagged objects at
different locations may also have different RF environments. So,
the challenge lies in creating a unified object state classifier that
can adapt to different RF environments and object types. For
example, Figure 6 compares the RSSI variations of the RFID
tag when attached to 2 different objects at 2 different locations.
Both objects in Figure 6a and 6b are still. The variations of
the RSSI within each channel (every 0.2 seconds) are bigger
for object a when compared to object b. Object materials, tag-
reader distance, and multipath reflections can all contribute to
differences like this, making it a challenge to create a unified
classifier. On the other hand, training specific machine learning
models for each individual object is computationally expensive
and does not scale well.

To mitigate the challenges of variable object types and RF
environments, we combine signal processing and machine
learning to account for different RF environments around
each tag while making it possible to scale to a large number
of objects. More specifically, we combine a unified SVM
classifier with a moving window that could adjust to the RF
channel parameters noise level of each tag. Our approach
accounts for the variations in RF channel parameters associated
with objects and environments. In this section, we discuss the
implementation of this classifier. We later present a study to
evaluate its performance.

The incoming RF channel parameters are segmented using
a 0.5-second sliding window with overlapping of 0.25 seconds.
First, we determine if the tag is visible to the reader (Equation
3). If it is, we create a 10-second buffer to capture the variations
of raw RSSI and phase within each channel. We calculate
the SD of RSSI and phase. For still objects, we assume that
the measurements error of RSSI and phase are random. And
when the tag is still, the measurements of these two channel
parameters will follow Gaussian distributions centered around
the real value. The probability of each parameter deviating from
the mean by more than 3 times the standard deviation (SD) is
0.2%. In other words, if either parameter contains samples that
are out of the 3 times of SD on either side of the Gaussian
distribution, it is very likely that this data point is generated
by non-still object states (e.g. motion or interference). Given
that the RF baseline of different tags is dependent on object



type, location and time, we continuously update the 10-second
buffer according to current RF channel parameters. Details of
this method are described in Algorithm 1.

Algorithm 1: Determine if the tag is still
1 if present == 1 then
2 /*Initialize 10 second buffer for RSSI and Phase
3 which include 50 channels (0.2s/channel)*/
4 for each of the 50 channels
5 Bu f f er_Phase_SD = SD(Phases in each channel);
6 Bu f f er_RSSI_SD = SD(RSSIs in each channel);
7 Phase_SD = mean(Bu f f er_Phase_SD);
8 RSSI_SD = mean(Bu f f er_RSSI_SD);
9 if (|phase(now)−mean(phases in he current channel))|<= 3∗

Phase_SD&&|(RSSI(now)−mean(RSSI inthe current channel)|<= 3∗RSSI_SD)
then

10 still = true;
11 /*Update buffer for RSSI and Phase */
12 remove(Bu f f er_Phase_SD(1));
13 Bu f f er_Phase_SD(1 : end−1) = Bu f f er_Phase_SD(2 : end);
14 Bu f f er_Phase_SD(end) = SD(phases in the current channel);
15 remove(Bu f f er_RSSI_SD(1));
16 Bu f f er_RSSI_SD(1 : end−1) = Bu f f er_RSSI_SD(2 : end);
17 Bu f f er_RSSI_SD(end) = SD(RSSIs in the current channel);
18 else
19 still = f alse;
20 return still ;

Note that we classify the tag state as still only when both
the phase and RSSI stay within the [mean−3SD,mean+3SD]
range. This was an explicit decision to improve sensitivity for
non-still states, which in turn improves sensitivity for object
usage detection. In addition, all objects should not be moved
during the 10-second initialization so that our classifier could
function accurately.

Under the condition that the tag is present and not still, we
utilize the five features in the previous section to implement
an SVM classifier with RBF kernel to differentiate between
the motion and the interfered states. The parameters of the
RBF kernel are optimized using training data in the evaluation
study.

V. ACTIVITY RECOGNITION IN A HOME ENVIRONMENT

To validate the effectiveness of our approach, we conducted
a naturalistic study across 4 different spaces in a living
environment including: a kitchen (Figure 8a), a bathroom
(Figure 8b), a dining room (Figure 8c), and a living room
(Figure 8d). We instrumented 110 commonly used objects with
RFID stickers. RFID reader with a single antenna is placed
in each of these environments, the positions of the antennas
are highlighted with the red boxes in Figure 8. 10 participants
were recruited, who are undergraduate and graduate students (7
males, 3 females), aged from 21 to 30. The study happened in
7 different days during a period of 1 month. On each day, there
are either 1 participant individually or 2 participants working
together to finish all or a subset of the 24 activities outlined
in Figure 7.

A. Data Collection and Processing

26 hours of RFID data in total was collected as participants
went through 24 different activities in these environments.
These 24 different activities belong to a few categories of

ADLs and instrumental ADLs, referring to people’s daily self-
care activities proposed by Katz et al. [8]. These activities
cover categories including preparing meals, eating, taking
medication, housework, reading, personal hygiene, mobility,
and entertainment. Figure 7 provides more details on these
activities. Examples activities are shown in Figure 8. A
ceiling-mounted camera is deployed to collect ground truth
information about object usage and activities. We created a
video analysis tool to manually annotated object usage and
activities happened in the study. The data was annotated using
1-second sliding windows. 2 annotators were employed to
label these videos independently and the sections in which
their labeling are consistent was utilized as ground truth (95%)
and the inconsistent sections are ignored (5%).

B. Sensing Object Usage

To improve performance in object usage sensing, daily
objects are grouped into 2 categories and different tagging
strategies were applied. The 2 categories include objects that
are mobile while being used and objects that are static while
being used. For example, floor mops are under motion when
performing cleaning tasks, while the sitting bench is static
when seated.

1) Tagging strategy: Mobile objects are instrumented with
a single tag. Most of the objects used in the evaluation study
come from this category. For objects that are static under usage,
a tag is attached every 30 cm on the object; a single tag is
applied to objects that are smaller than 30 cm.

2) Tag states and object usage correlation: Object usage
was detected leveraging its correlation with object states. In
Figure 9, we visualize the recorded time series states of a
floor mop (Figure 9a) and a sitting bench (Figure 9b) for 100
seconds. For each object, the data is segmented into 2 sections.
In the first 50 seconds, the object is not in use while in the
second 50 seconds it is being used. For mobile objects, the
motion is a direct indication of object usage. However, blocked,
still and interfered states were also detected. This is a typical
situation for mobile object since the pauses in between motions
will generate still states while interference and blocking from
the human body are also common. The distinctive signature
for usage is the increased variations in object states when
compared to sections where the object is still. We apply a
moving buffer with a duration of X seconds to capture this
variation and determine usage when the SD of object states
(0 to 3) in the buffer reaches threshold P. The buffer size X
and the threshold P will be optimized using training data. For
tags that are attached to static objects, such as the ones on the
bench, usage can be determined by the absence of tag reflected
signals when seats are occupied.

3) Evaluation: In order not to overfit our model towards
any specific environment, we first train our classifier in 3
different environments including an office, a hardware lab
and a living environment using a small dataset collected from
a staged study including 300 instances of object state data
collected from 3 different environments. Note that this data
collection process is separated from the 7-day evaluation study.



Fig. 7. Activities conducted in the user evaluation study

Fig. 8. In home study environments and example activities (a) kitchen: prepare
smoothie; (b) bathroom: comb hair; (c) dining room: take medicine; (d) living
room: read book

Fig. 9. Correlation between tag states and object usage: (a) example mobile
object: floor mop, (b) example static object: sitting bench

We then use this classifier to process these 7 days of raw RFID
data collected in the living environment into 4 different object
states. 1 day of annotated object usage data was used as training
data to optimize parameters in the object usage classifier by
maximizing object usage detection F1 score. We then evaluate
this classifier (X = 21s,P = 0.94) on other 6 days of annotated
object usage data. The classifier achieved a precision of 92.4%
and a recall of 90.9% for detecting object usages. It is worth
noting that the false positive is low (0.03%). During the study,
each object will generate on average about 1 false positive
every hour.

C. User Presence Sensing

In this section, we discuss how we determine the presence of
users by leveraging the states of tagged objects in the ambient

environment. We first determine The room level location by
the corresponding RFID antenna. While object usage is a
strong indication of user presence, it is not required for user
presence sensing. People’s motion in the ambient environment
will trigger interference in the tags nearby which can be utilized
to infer user presence. Details of this method are described
in Algorithm 2. Note that there is one parameter, ratio, that
needs to be optimized in this algorithm to provide a balance
between precision and recall in our presence detection. ratio
is the threshold of the percentage of tags that are in motion or
interfered required to trigger a positive presence classification.
Having a low ratio will improve the sensitivity of presence
detection, however, it will trigger more false positives in the
user presence classifier. Having a large ratio will improve
the precision in detecting user presence, while at the same
time increase the possibility to generate false negatives. This
trade-off is optimized through training data collected in the
evaluation study.

Algorithm 2: Determine user presence
1 n = number of objects present in the ambient environment

Tag State Bu f f er = Tag State Now(1 : n);
2 if Count(Tag State Bu f f er == (moving || inter f ered))> n∗ ratio then
3 User Presence = 1;
4 else
5 User Presence = 0;
6 return User Presence;

1) Evaluation: We utilized data collected in our activity
recognition study to evaluate the user presence sensing ap-
proach. In addition to 26 hours of activities when users are
present in these environments, we also collected 8 hours of data,
2 hours from each room when they are empty to evaluate the
false positives of our presence sensing approach. Our sensing
parameters ratio in Algorithm 2 are optimized using 1 hour
of labeled user presence and 1 hour labeled user, not presence
data and evaluated on the rest of the data. Our result yielded
an F1 score of 96.7% with a precision of 96.2% and a false
positive rate of 2.8%. At this point, ratio = 15%. Object usage
contributed to 65% of presence detection. During the other 35%
of the time when no object usage is observed, user presence was
captured by the RF interference as they move in the physical
space.

D. Activity Recognition Approach

Previous literature has demonstrated how to recognize daily
activities from object usage [1], [15]. In this work, We employ



one commonly used methods: Hidden Markov models (HMM).
The contribution here is not meant to be of machine learning,
but it serves as an important piece to demonstrate the feasibility
of activity recognition based on long-range RFID.

1) HMM Emission & Transition Probabilities: The HMM
classifier considers the activity sequence to be the hidden states
and the object used to be the emission states. There are three
variables that need to be optimized from the training data, the
initial probability of all activities, the transition probabilities
between different activities and the emission probability from
the activates to the objects. These concepts are explained using
the following example. Consider a list of two activities, each
with a set of utilized objects
• Blend smoothies: Orange, Apple, Cutting Board, Ice,

Blender, Milk, Water Cup
• Make a sandwich: Cutting Board, Plate, Bread, Cheese,

Ham, Plate
Here, the activities are hidden states, and their corresponding

objects are the emission states. The emission probabilities
for activity "blending smoothies" refers to the conditional
probability of each object observed given the activity. (E.g.
the probability of using "orange" given activity "blending
smoothies"). The transition probability controls how the activity
is chosen given the state of the previous activity. For example,
what is the chance that a user is making a sandwich given that
he was previously blending smoothies? The initial probability
is the prior likelihood distribution of the two activities. These
parameters are learned using training data in the evaluation
section. The system infers the most likely sequence of activities
by maximizing the joint probability of the activity sequence
and the observations of objects. The most likely sequence of
activities for any given sequence of objects can be effectively
determined using the Viterbi algorithm [4]. For more details
on the HMM-based activity recognition, please refer to the
evaluation section.

E. Activity Recognition Evaluation

In this section, We leverage the object usage data generated
in the previous section to classify 24 different activities outlined
in Figure 7. Given that there is a dedicated antenna installed in
each room, we can refer to the corresponding antenna number
to narrow down the search space for activity recognition. In
particular, activity #1 to #13 is conducted in the kitchen, activity
#14 to #17 is conducted in the dining room, activity #18 to #20
is conducted in the living room and finally, activity #21 to #24
is conducted in the bathroom. Next, time series data of object
usage are segmented into "episodes". For example, if the object
is continuously used, for 30 seconds, that will be considered a
single episode of object usage. Each episode will be considered
one emission state from an activity (a hidden state) in the HMM
model which are ordered by their starting time. The activity
recognition results will be compared with manually labeled
ground truth for evaluation. For example, given a continuous
usage of a "floor mop" from 0 to 30 seconds, the HMM inferred
the most likely activity for this 30-second episode is "cleaning
the floor". However, ground truth indicate that from 20 to 30

Fig. 10. Activity classification result confusion matrix

seconds, the participant was "watching TV". So that period
will be considered as false positives for "cleaning floor" and
false negatives for "watching TV".

We applied leave-one-day-out cross-validation where the
HMM is trained on data from 6 days and then evaluated on
the data collected on a remaining day. Given that different
activities have different time durations. We normalize activity
recognition results by time and evaluate the average F1 score
accuracy across all 24 daily activities. A random guess, in
this case, would yield an F1 score of 4.2%, provide an upper
bound for the activity classification, we first evaluate the HMM
classifier using human labeled object usage ground truth as
input. In this case, the HMM classifier achieved an average F1
score of 91.1%. When we use the object usage automatically
generated by our RFID based approach. Activity recognition
accuracy range from 46% to 100% with an average F1 score
of 82.8% across 24 different daily activities. We further break
down this result in Figure 10 which shows the classification
F1 score for each of the 24 activities described in Figure 7. In
general, activities that share physical space and objects have
lower recognition accuracy. For example, the food preparation
section is low when compared to all other activities since they
take place in the same environment and share a number of
objects, making it a challenge to differentiate between these
activities. Activities that take place in other environments have
a comparatively distinctive set of objects, making it easier to
accurately recognize and classify these activities.

VI. CONCLUSION AND DISCUSSION

In this work, we presented a method for detecting user
presence and understanding daily activities leveraging un-
modified long-range RFID systems. Our approach requires
no user instrumentation and single antenna coverage for
operation. We evaluated our system performance in a study
deployed in a living environment and achieved an F1 score
of 82.8% recognizing 24 different daily activities. In addition,
we demonstrated the user presence sensing capability of our
system with an F1 score of 96.7%. We achieved similar results
when compared with previous work where multiple antennas
and extensive training data are required.



Prior RFID based solutions require excessive training on
the objects or the ambient RF environment. In this work, we
combine signal processing with machine learning to monitor the
noise level of the ambient environment of each object, which
helps IDAct to adapt to different object types and environments.
In addition, our algorithm allows differentiation of intentional
object usage and accidental user interference, allowing IDAct to
detect user presence without requiring object interactions. Given
the limited sensing area of each antenna (around 200 sqft),
we instrument RFID antennas at a room level which reduced
the number of potential activities. As a result, we achieved
promising recognition results given the relatively small set
of activity data we collected in our study. The training data
and testing data are generated by different participants for our
evaluation study, which demonstrate the potential of IDAct to
adapt to new users without the requirement of retraining.

Our current system has the following limitations. Passive
tags utilized in this work will suffer from a decreased sensing
range when attached to conductive materials (e.g. metal
objects). Sufficient read rate of 10 reads/second or more per
tag is required to guarantee high sensing accuracy. In our
evaluation study, each antenna is turned on sequentially in
each room to guarantee a high reading rate. When the reader
is simultaneously powering multiple antennas, the individual
read rate for each tag will drop, which may impact the sensing
accuracy for object usage detection. In addition, the current
framework of our activity recognition approach does not support
detecting multiple users conducting activities simultaneously.

In the future, We are interested in further exploring reducing
the training required for activity recognition. Instead of using a
list of predefined activates, We want to explore the possibilities
to automatically cluster activities into different categories
leveraging the object state and human presence data provided
by our system. In addition, We would like to investigate how
to detect and differentiate multiple activities conducted by
multiple users simultaneously. We consider these as important
next steps towards the goal of creating an intelligent system
that provides ubiquitous and fine-granular activity recognition
as a service to support smart environment, personal wellness
and assisted living applications.
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