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Abstract—Electricity and appliance usage information can 
often reveal the nature of human activities in a home. For 
instance, sensing the use of vacuum cleaner, a microwave oven, 
and kitchen appliances can give insights into a person’s current 
activities. Instead of putting a sensor on each appliance, our 
technique is based on the idea that appliance usage can be sensed 
by their manifestations in an environment’s existing electrical 
infrastructure. Prior approaches using this technique could only 
detect an appliance’s on-off states; that is, they only sense “what” 
is being used, but not “how” it is used. In this paper, we 
introduce DOSE, a significant advancement for inferring 
operating states of electronic devices from a single sensing point 
in a home. When an electronic device is in operation, it generates 
time-varying Electromagnetic Interference (EMI) based upon its 
operating states (e.g., vacuuming on a rug vs. hardwood floor). 
This EMI noise is coupled to the power line and can be picked up 
from a single sensing hardware attached to the wall outlet in a 
house. Unlike prior data-driven approaches, we employ domain 
knowledge of the device’s circuitry for semi-supervised model 
training to avoid tedious labeling process. We evaluated DOSE in 
a residential house for 2 months and found that operating states 
for 16 appliances could be estimated with an average accuracy of 
93.8%. These fine-grained electrical characteristics affords rich 
feature sets of electrical events and have the potential to support 
various applications such as in-home activity inference, energy 
disaggregation and device failure detection. 

I. INTRODUCTION  
The ability to sense, model, and infer human activity in the 
physical world remains an important challenge in pervasive 
computing. Infrastructure-mediated sensing has been proposed 
as one method for low-cost and unobtrusive sensing of human 
activities [2,6,7,14,15,16,22]. This technique is based on the 
idea that human activities (e.g., vacuuming, using the 
microwave, or blending a drink) can be sensed by their 
manifestations in an environment’s existing infrastructures 
(e.g., a home’s water, electrical, and HVAC infrastructures), 
thereby reducing the need for installing sensors everywhere in 
an environment. In one example of IMS, Patel et al. 
demonstrated the ability to detect electrical events using a 
single plug-in sensor by fingerprinting the transient electrical 
noise signatures on the power line [15]. Gupta et al. improved 
on this method by utilizing the electromagnetic interference 
(EMI) produced by modern electronic devices in the home [7]. 
From a single sensing point, the presence of electronic devices 
can be inferred by training on the frequency domain EMI 
signatures of those devices. Although useful, these techniques 
only detect the on/off state of electronic devices. However, the 
continuous time-varying EMI provides many more clues on 

how a device is being used and what state the device might be 
in, providing more granular information for activity recognition 
and energy disaggregation. 

To this end, we present a technique to detect the operating 
states of electronic devices through a single-sensing point 
which can be installed anywhere in the home (see Figure 1). 
DOSE (Detecting Operating States of Electronic devices) 
leverages electrical noises for estimating the operating states of 
appliances. Electronic devices yield electromagnetic 
interference (EMI) when they are in operation [7]. We found 
that when an electronic device operates at different states (e.g., 
high vs. low CPU loads) or under varying conditions (e.g., 
using vacuum cleaner on rug vs. hardwood floor), their EMI 
fluctuates distinctively based on the corresponding user 
behaviors. By analyzing time-varying EMI, we are able to 
identify various operating states of an electronic appliance. In 
particular, we leverage domain knowledge of the device’s 
circuit model and semi-supervised clustering for state 
estimation, obviating the need of tedious labeling process on 
the data. This usage of domain knowledge as a prior for model 
training, instead of data-driven approaches, can significantly 
reduce the training efforts as it does not require huge amount of 
labeled data. In contrast to [7] which focused on static, SMPS-
based EMI for electrical event detection, we investigated time-
varying EMI induced by mechanically switching (e.g., vacuum 
cleaner), electronically switching (e.g., laptop), and the 
combination (e.g., hair dryer) circuits. 

 
Figure 1: DOSE detects user-driven operating states of 

electronic appliances through a single sensing point 
installed anywhere in the house. 
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Understanding and discovering the operating states of 
electronic appliances can be beneficial to a variety of 
applications. For instance, these fine-grained electrical 
characteristics are richer feature sets than static features used in 
[7] and could be employed to achieve accurate energy 
disaggregation. In addition, the state changes in electrical 
characteristics are indicative of human behaviors and could be 
used in activity-inference research. For example, two residents 
could use the hair dryer very differently. By detecting the 
operating states in their respective usage patterns, the system 
could identify energy usage attributed to different individuals. 
Finally, the system could also be used for machine failure 
discovery by observing changes in known states or detecting 
the presence of a new, abnormal operating state. Detecting the 
states, then, is a vital first step to realizing these applications. 

Specifically, the contributions of this paper include: 

• A novel, low-cost technique for sensing operating states 
of electronic devices using time-varying EMI from a 
single sensing point. 

• An algorithm leveraging domain knowledge and using 
semi-supervised learning techniques to obviate the need 
of labeled data, which significantly reduces the training 
effort. 

• An analysis showing high detection accuracy across 16 
electronic appliances in a real home setting. 

II. RELATED WORK AND BACKGROUND 
Detecting electrical events has been accomplished using 
distributed sensors – one sensor on each appliance [4,21]. 
Although this approach is straightforward, it requires costly 
installation process and maintenance, and does not reveal 
operating states of an appliance. While other camera-based 
approaches are effective to capture electrical events and avoid 
the need of installing disturbed sensors [12,24], it raises 
potential privacy issues in real home settings and therefore 
restricts its applicability. Our approach on the contrary does not 
require any visual input and can detect electrical events and its 
corresponding states using a single sensing hardware. 

The alternative approach is NALM (Non-intrusive 
Appliance Load Monitoring), a single instrumentation inline 
with the power meter to collect total energy usage of a 
household [8]. This approach detects a step change in power 
consumption data for sensing disaggregated energy attributed 
to individual appliances [11,17,18]. Recent works further 
showed the aggregated energy data can reveal a variety of 
private information of a household such as occupancy [10], 
eating/sleeping routines [13] or habitual behaviors [1]. 
Although NALM is an effective tool for detecting electrical 
events, the above works relied on a step change in consumption 
data, which usually requires high-frequency consumption 
measurements [9] and intensive training process [23].  

Alternatively, infrastructure-mediated sensing (IMS) 
detects the electrical activities through events that affects the 
house’s utility infrastructure [2,6,7,14,15,16,22]. Prior IMS 
research by Patel et al. has shown transients by mechanical 
switches can be used for electrical event detection [15]. Taking 
a step further, Gupta et al. leveraged EMI (Electromagnetic 

Interference) sensing to capture the electronic activations [7]. 
Most recent electronic devices employ switched-mode power 
supply (SMPS), which is highly efficient and compact in size, 
but unavoidably causes loud EMI noise. These noises can be 
regarded as the fingerprint of distinct devices and repurposed 
for electrical event detection. Similar EMI sensing technique 
was also shown in industrial applications for detecting motor 
failures [20]. 

Our approach is in spirit similar to ElectriSense [7]; 
however the goal and fundamental algorithm are quite 
different. ElectriSense was designed to detect on/off electrical 
events using static EMI caused by SMPS-based electronic 
appliances. DOSE, on the other hand, can detect an appliance’s 
operating states using time-varying EMI caused by different 
sources, including mechanical switching, electronic switching 
and the combination circuit. Different from Gaussian fitting 
and supervised learning in [7], our algorithm leverages domain 
knowledge of the device’s circuitry for semi-supervised 
learning, reducing efforts required in training the classifier. 

III. THEORY OF OPERATION 
In this section, we detail the different types of time-varying 
EMI and how they vary with changes in the appliance’s 
internal operating states or under different physical uses.  

A. EMI for Motor-based appliances 
Motors exist in a variety of home appliances such as vacuum 
cleaners, blenders, and food mixers. Commutator motors 
(Figure 2) are energy efficient because they yield high 
rotational speed with relatively low power consumption. 
However, due to mechanical switching mechanism between 
the brushes and commutator, it inevitably generates strong 
EMI. 

Figure 2 illustrates the schematic view of a three-slot, two-
pole brushed motor. This motor consists of three commutator 
slots and three electromagnets, each of which has two poles 
(north and south). Two brushes are used to supply electric 
currents to the circuitry. When the motor is in operation (Figure 
2, left), electric currents from commutators induce magnetic 
fields on iron bars, turning them into electromagnets (the 
“bars” insides the commutators in Figure 2). It is noted that the 
3rd iron bar does not form any magnetic field as there is no 
current flowing through it. There are two permanent magnets 
on both sides to generate rotation forces. In this example, the 1st 
iron bar is attracted by the left permanent magnet while the 2nd 
is repelled, generating a clockwise force to the motor. The 
breaking and making of contacts between the commutator and 
brushes causes poles of the conducted electromagnets to 
switch, forcing the motor to consistently rotate clockwise 
(Figure 2, right). High-efficiency motors have more slots 
(usually 21 ~ 25) and even more brushes to yield a stronger 
torque. 

1) Commutating EMI due to mechanical switching: The 
motor EMI is caused by the mechanical switching phenomena. 
As the motor rotates, the action of breaking and making 
contacts between the commutator and brushes yields periodic 
current spikes at the motor's rotation rate multiplied by the 
number of commutator slots. That is, the EMI appears at the 
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harmonics of the motor's rotation speed. For example, a motor 
with 21 slots and a rotation rate of 460 RPS (revolutions per 
second) yields current spikes at 21*460 = 9660 Hz, which 
manifests itself as EMI of the same frequency. This type of 
EMI, called commutating EMI, propagates mainly through 
conduction over the powerline network and also yields a small 
amount of radiated emissions. When the motor is turned on, it 
takes one to two seconds to reach the specified operating 
speed. This speed-up duration appears as a “ramp-up” EMI 
(see Figure 3 and 4). In addition, there exists electrical 
resistance between each brush-commutator terminals. These 
impedances affect motor rotations, causing relatively weaker 
EMI near the fundamental frequency. We leverage these EMI 
as features for estimating motor operating states. We will 
detail our state detection algorithm in a later section.  

2) Time-varying EMI at different rotation speeds: 
Commutating EMI appears at the harmonics of the motor’s 
rotation rate. When the motor operates at a different speed, the 
EMI in turn appears at distinct frequencies. Figure 3 shows 
fluctuating EMI when a blender (Cuisinart PowerBlend600) 
operates at different speeds. In the first duration (5s ~ 10s in 
Figure 3), the blender was running at a relatively low speed, 
yielding EMI at roughly 6 kHz. When it switches to a higher 
speed (10s ~ 15s in Figure 3), EMI frequency ramps up to 7.1 
kHz as the motor’s rotation rate increases.  

3) Time-varying EMI in response to physical use: It is 
noted that when the blender motor spins at a higher speed, 

water within the blender container is vigorously stirred, 
causing air pockets and liquid to collide randomly with the 
blades. This uneven air/liquid resistance causes the blender 
speed to fluctuate, thus resulting in the irregular fluctuating 
EMI (as visible in Speed 4 section of Figure 3). We also 
observed time-varying EMIs when a vacuum is used on 
different surfaces. Figure 4 illustrates the fluctuating EMI 
when a vacuum cleaner (Bissel 6584) was used on the rug and 
hardwood floor. In a vacuum cleaner, the motor spins to 
exhaust the air from the machine, making the dust collection 
container a temporary vacuum. To balance the pressure, the air 
outside the cleaner flows into the container and then releases 
from the motor vent. This air circulation sucks the dusts into 
the machine and releases the air from the machine. When 
being used on the rug, the motor rotates at a lower, uneven 
speed due to the disturbed airflows by the rug. The reduction 
and disturbance in motor rotations therefore yield an EMI that 
fluctuates at a relatively low frequency (5s ~ 15s in Figure 4). 
Once the vacuum cleaner moves to a hardwood floor, the air 
intake becomes largely unhindered yielding static EMI at a 
higher frequency (16s ~ 21s in Figure 4). 

B. EMI for SMPS-based appliances 
SMPS (switched-mode power supply) has been extensively 
used in modern electronic appliances due to its small size and 
high efficiency. Unlike traditional linear power supply, SMPS 
manages power by switching the supply between complete-on, 

 
Figure 3: Time-varying EMI of a blender operating at 

different speeds. Higher rotation speed (from 10s to 15s) 
produces EMI at a higher frequency of 7.1 kHz. 

 
Figure 4: Time-varying EMI of a vacuum. When being 

used on a rug (from 5s to 15s), the motor rotates at lower 
speed and yields fluctuating EMI due to uneven airflows. 

             
Figure 2: The schematic view of a three-slot, two-pole brushed motor. (Left) When the motor is on, electronic currents 

through commutators (arcs) turn iron bars into electromagnets, generating a clockwise force. (Right) Breaking and 
making contacts between commutators and brushes switches poles of conducted electromagnets, making the motor 

consistently rotate clockwise and generating EMI. 
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complete-off and low dissipation. Because the power supply 
operates at high dissipation only for a very short period, it 
minimizes unnecessary power wastage. Figure 5 shows the 
block diagram of an AC-to-DC SMPS. The key component of 
SMPS is a pass-transistor; it controls the frequency of oscillator 
that switches the stored energy from the inductors to the load 
that an electronic device requests. To reduce the size of the 
supply, SMPS usually operate from tens to hundreds of 
kilohertz. This switching action inherently generates strong 
EMI near the frequency where SMPS switches between 
different modes. We will refer this frequency as switching 
frequency. Gupta et al. leveraged SMPS-based EMI for 
electrical event detection and have shown the stability of signal 
patterns across different homes [7]. In DOSE, we take a step 
further and analyze time-varying EMI to discover operating 
states of SMPS-based appliances such as laptops and TVs.  

1) Time-varying EMI at different CPU loads: In SMPS, 
output voltage regulation is accomplished by adjusting the 
ratio of on-off durations. As shown in Figure 5, the output DC 
is compared with the reference voltage to adjust switching 
frequency of the PWM (pulse-width modulation) oscillator. 
Electronic appliances with varying loads such as laptops can 
cause EMI fluctuations near its switching frequency. Figure 7 
illustrates the time-varying EMI of a laptop (Acer Aspire 
5736Z) with its CPUs operating at idle, medium and high load. 
When the CPU is running at a high load (i.e., 90~100%), the 
dropping output voltage causes the oscillator to operate at a 
higher frequency to draw more energy, yielding the EMI at 
higher frequency and magnitude (Figure 7, right). In other two 
modes, idle and medium load, we observed relatively weaker 

but still discernible EMI (Figure 7, left and middle). We note 
that the signal patterns are distinct on different laptops and 
PCs that can be attributed to manufacturer differences in 
power regulation circuitry. These unique fingerprints between 
different computers could be used for manufacturer 
identification or abnormal detection, such as detecting large 
power draws that may indicate an impending device failure 
(e.g., a malfunctioning video card). 

2) Time-varying EMI caused by transient actions: Another 
type of time-varying EMI that we observed is caused by 
transient actions such as switching a TV channel. Figure 6 
shows the EMI signal of a TV (Sharp 42-inch) when it is 
switched from one channel to another. As shown in Figure 6, 
we observed a glitch, or sudden change in EMI, between 11s ~ 
13s when the action was performed. On further investigation 
of the TV tuner’s circuitry and operation, we found that when 
a TV switches to a new channel, the TV tuner resets the center 
frequency, causing the oscillator to operate at a different 
frequency for a short period. Prior research by Enev et al. has 
shown that TVs produce varying EMI signals that correlate to 
the screen content being displayed [3]. The EMI change from 
a channel switch is distinct from EMI change as a result of 
screen content; we have found that due to its large transient 
nature, it can be robustly detected and extracted. 

C. EMI for appliances with large resistive loads 

 
Figure 6: Time-varying EMI of a TV. When a TV is 

switched to another channel, the TV turner resets the 
center frequency, resulting in a transient glitch (11s~13s) 

in its EMI signal. 

 
Figure 5: Block diagram of an AC-to-DC SMPS. Voltage 
regulation is accomplished by adjusting the ratio of on-off 
durations of PWM oscillator, which causes time-varying 

EMI in different operating states.  

       
Figure 7: Time-varying EMI of a laptop (Acer Aspire, 15-inch) with its CPU at idle (left), medium load (middle) and high 

load (right). When the CPU is running at high load, the dropping output voltage causes the oscillator to operate at a 
higher frequency to draw more power, yielding the EMI at a higher frequency and magnitude. 
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In addition to a motor, certain appliances such as hair dryers 
and fan heaters employ large resistive components to generate 
a stream of hot air. When the device is running in different 
modes (e.g., warm vs. hot), changes in resistive loads affect the 
motor operation and result in discernible EMI patterns for state 
estimation. Of course, this finding extends to other appliances 
where any other component affects motor operation as well, 
such as a torque screwdriver. 

Figure 8 illustrates a simplified schematic view of a dual-
mode hair dryer (i.e., generating hot and cool air). The AC 
source is first rectified to DC current. When the hair dryer 
operates at cool mode (i.e., making contacts at terminal 1 and 2 
in Figure 8), only the low resistive load (RS) and the motor-
driven fan are actuated. When it switches to hot mode (i.e., 
terminal 2 and 3 in Figure 8), the large resistive load (RL) is in 
parallel with RS, which increases the total current load to the 
circuitry and changes the fan’s rotation speed. These behavior 
changes induce distinct EMI patterns at respective operating 
states. Figure 9 shows an example of this time-varying EMI 
when a hair dryer switches from the cool to hot mode.   

IV. ALGORITHM 
Figure 10 shows the processing pipeline for operating state 
detection and classification. We detail each component of our 
algorithm in this section. 

A. Data Acquisition 
To record EMI signals, we follow the experimental setup in [7] 
with minor adjustments.  A power line interface (PLI) is 
plugged in the wall outlet to obtain the analog signal (see 
Figure 1). The PLI was modified from [7] and has a high-pass 
filter with cut-off frequency at 5.3 kHz. This corner frequency 
was chosen to strongly reject 60 Hz and harmonics, avoiding 
possible damages to the sensing hardware while being low 

enough to capture low RPS motor EMI. The filtered signal is 
fed into a USRP (Universal Software Radio Peripheral) N210, 
which functions as an ADC (analog-to-digital) converter 
sampling at 500 kHz. We next compute Fast Fourier Transform 
(FFT) over these time-domain data, yielding 16384-point FFT 
vectors with 30.52 Hz bins. This resolution of bin size allows 
us to observe small EMI fluctuations in different operating 
states. The FFT vectors are streamed to our processing pipeline 
for state detection and classification. 

B. Pre-processing 
We first remove the baseline signal from recorded data. To this 
end, we average the first 100 FFT vectors in each recorded data 
file as the baseline vector, and subtract it from the remaining 
FFT vectors. The differential vectors represent EMI produced 
by a later-actuated electronic device. Next we perform filtering 
to remove noises resulting from the sensing hardware and 
powerline network. In particular, we apply a median filter with 
a window size of 10 to removed sparse noise. To further 
smooth the data, we use TVD (Total Variation Denoising) with 
regularization parameter of 20 [19]. TVD was designed to 
remove noise from images with high total variation while 
preserving important details such as corners and edges. Since 
EMI signals inherently have excessive, sparse noises, TVD can 
efficiently remove the noise without damaging most signal 
characteristics. 

C. Event Detection 
After the noise and baseline removal, we truncate the recorded 
data to extract the event segments. In particular, we sum up 
each FFT vectors and plot the total magnitude fluctuation over 
time (Figure 11, top). Any significant variation in this curve 
represents a possible electrical event and can be easily 
segmented by a threshold-based approach. Figure 11 
demonstrates this event detection procedure. The top figure in 

 
Figure 8: The simplified schematic view of a dual-mode 

hair dryer. While the device was switched to “hot” mode 
(i.e., terminal 2 and 3), a large, parallel resistance (RL) 
increases total current loads to the circuitry and affects 

rotation speed of the motor-driven fan (marked as “M”), 
causing time-varying EMI (example in Figure 9). 

 
Figure 9: Time-varying EMI of a hair dryer in two 

different operating temperatures. 

 
Figure 10: Processing pipeline of operating state detection and classification. 
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Figure 11 shows the normalized magnitude of the EMI data, 
where the rising the falling edge respectively correspond to on 
and off of an electrical event. To identify the event, we take the 
1st derivative of this magnitude curve (Figure 11, bottom). The 
intersection of the threshold lines (dotted lines) and the 1st 
derivative curve denotes the start and end of an event (red 
circles). In this study, we empirically decided the threshold 
value of 0.0025 using the data collected from our study. This 
threshold is able to robustly detect all electrical events while 
inducing only two false alarms.  

After extracting the event segment, we further truncate the 
FFT vectors to a specified frequency range that covers all 
operating states of a device. This 2nd truncating procedure is 
critical for the feature extraction. As we will only extract 
features within the specified spectrum, the truncated FFT 
vectors can more precisely represent the signal characteristics. 
Previous research [7] has shown that the target EMI frequency 
can be easily located by switching a device on and off, and 
therefore, we assume such information already exists. In this 
study, we manually turn on and off for each operating state of a 
device to retrieve the target frequency range of each device. 

D. Frame Extraction 
For the truncated event segment, we further chunk into smaller 
units (called frames) by a sliding window of 1 second with 0.5s 
overlapping. According to our observations, the EMI shows 
stable signal characteristics within the same operating state. 
This short-term analysis therefore servers two purposes in this 
study: (1) to confirm the stability of EMI characteristics within 
the same operating states, and (2) if EMI fluctuates 
dramatically in the same states, to analyze the variation. 

E. Feature Extraction 
We extract aggregated features from each frame based on 
signatures of different time-varying EMI. The first six features 
are mean, max and min magnitude and frequency of the peak 
EMI of the frame; they describe the characteristics of the 
fundamental EMI. For motor-based devices, there usually exist 
multiple peak EMIs due to uneven rotations caused by the 
fractions and electric resistance. To capture this, we extract the 
frequency gap between two dominant EMI peaks as the 7th 
feature. Some EMI has distinct total magnitude variation such 
as laptop (under different CPU loads) or hair dryer (under 
different temperature modes). Therefore we choose mean 
magnitude of the frame as the 8th feature. In the end, the system 
extracts an 8-tuple feature vector for each frame. 

F. Clustering 
For classification of operating states, we choose EM 
(expectation maximization) clustering algorithm due to some 
key advantages. One advantage of the EM algorithm is its 
adaption to uneven cluster sizes. As we expect a resident may 
use each device in different states unevenly in daily life, thus 
the cluster sizes corresponding to different states may vary a 
lot. EM typically outperforms other similar algorithms such as 
k-means which is more sensitive to the cluster size. In addition, 
EM allows clusters to overlap. If an appliance has two similar 
operating states (e.g., similar rotation speed in 2 modes of a 
food mixer), their respective clusters will unavoidably overlap 
in the feature space. 

Perhaps more importantly, EM only requires the number of 
clusters as the input parameter. From the user perspective, we 
perceive the states of an appliance either from its outlook (e.g., 
6 buttons of a blender), physical use (e.g., vacuuming on 
different surfaces) or its circuitry model. Whenever we get a 
new device, this human observation can be employed as a prior 
knowledge to train the model, obviating the need to label each 
individual state during calibration. We leverage this domain 
knowledge to determine the input parameter (i.e., the number 
of clusters) to our EM classifier. In this prototype, we applied 
EM clustering on individual appliances and trained their 
models separately. For implementation, we used Scikit-learn 
package, a machine learning library for Python. 

V. EVALUATION, RESULTS AND ANALYSIS  

A. Study Design 
We set up our experiments in a real home environment. This 
residential house is a triplex, 1100 sq. ft. townhouse of two 
residents (one male, one female). To explore the temporal 
stability of the signal, the data collection process was 
conducted across 2 months, including multiple sessions at 
different time (morning, afternoon and night) on both 
weekdays and weekend. During each session, we asked one 
resident to turn on a device to a specified operating state for a 
random time (5s ~ 10s) and then turned it off. When one 
resident was executing the requested action, the other resident 
remained performing her daily routines such as cooking, using 
computers or watching TV. Each electrical event was manually 
labeled. It is noted that these labels are only used for 
evaluation, not for model training. Throughout the study, 580 
electrical events were collected in total. 

To collect the data, we installed the sensing hardware (i.e., 
a PLI and USPR N210) and a laptop in the participant’s house. 
The laptop is a local server for recording EMI data and the 
follow-up processing pipeline. For each type of time-varying 
EMI, we respectively chose four to six different appliances and 
in total, 16 electronic devices were evaluated in our study. 
Table I shows the list of these devices. As ElectriSense [7] has 
shown the stability of EMI signals across different homes, we 
believe findings in this study can apply to other households. 

 
Figure 11: Event detection procedure. (Top) Rising and 

falling edges represent on/off of an electrical event. 
(Bottom) The intersection of the threshold lines (dotted) 
and 1st derivative curve of the top curve represents the 

start and end of an electrical event (red circles). 
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B. Defining Operating States 
Different appliances of the same type usually have minor 
difference in operating states. For example, one blender has 6 
speed modes while the other may have 7. In this study, we 
chose the same number of states for devices within the same 
categories in order to get a baseline to compare between them 
(see Operating states Table I). 

1) Operating states of motor-based devices: For vacuum 
cleaners, we defined two states based on the surface where it is 
used (i.e., on a rug or hardwood floor). Most vacuum cleaners 
have a hose, which can be detached from the machine and 
used separately. Here we defined “using the hose” as the 3rd 
state. One of our vacuum cleaners (Eureca 1432A) does not 
equip a hose so we only evaluated it on two defined surfaces. 
For other motor-based appliances (i.e., blenders and food 
mixer), the states are defined as their operating speeds. 

2) Operating states of SMPS-based devices: For laptops, 
we defined three different states based on CPU loads. In the 
idle mode, we turned off all applications and keep the CPU 
load below 10% usage. In the medium load, we run our testing 
script that periodically calculates a specified math equation 
and meanwhile open a couple webpage and youtube videos, 
maintaining CPU loads floating between 30% and 60%. To 
simulate a high load, we run an online benchmark called 
SilverBench1, forcing CPU usage above 90%. For TV, we 
define the state as the action of switching a channel. 

3) Operating states of mixed-mode devices: We defined 
states of a hair dryer by the operating temperatures – cold, 
warm and hot. Some modern hair dryers have various 
temperatures modes combining with different fan speeds. As 
the factor of speed has been evaluated in motor-based 
appliances (i.e., vacuum cleaner, blender and food mixer), in 

                                                             
1 SilverBench: http://silver.urih.com 

this category, we focus on temperature variation, that is, how a 
large resistive load affects the time-varying EMI. 

C. System Performance and Analysis  
As EM is semi-supervised learning, the output of our 
processing pipeline are unlabeled clusters, each of which 
represents an unknown operating state. For analysis purposes, 
we assigned each predicted cluster to its actual class based on 
majority vote using labels that were annotated in our data 
collection process. Clusters with the same voting results are 
merged. Table I shows the classification results of individual 
appliances.  

Overall our system presents the average accuracy of 93.8% 
across 16 appliances. All vacuum cleaners report high 
classification accuracy. We noted that the 3rd state (i.e., using 
the hose) shows a highly discernible cluster in our trained EM 
model. In the study, we asked the participant to use hose to 
clean the corner of a wall. Compared to the machine used on a 
rug, the hose moves unevenly above the surface and causes an 
irregular EMI fluctuation. In addition, the detachment of a hose 
affects the airflows through the container due to changes in air 
pressure. These two factors causes time-varying EMI distinct 
from the other two modes (i.e., rug and hardwood floor), 
yielding high classification accuracy. 

Similarly, almost all laptops/PC and TV report high 
accuracy. Toshiba laptop (13”) reports a slightly lower 
accuracy (92.1%). As this model produces weaker EMI than 
other computers, it induces less discernible EMI between 
different CPU loads; the confusion occurs between the “idle” 
mode (recall=81.7%) and “medium load”. The EMI of Sharp 
TV (42”) is sensitive to the contents being displayed and 
produced some dramatically fluctuating EMI. In such case, the 
EMI caused by channel switching becomes unrecognizable and 
thereby slightly downgrades the event detection rate (hit rate of 
90%). To further explore the system robustness, we recorded 
40-min EMI data from both TVs without any actions of 

TABLE I. THE LIST OF DEVICES IN OUR STUDY AND CLASSIFICATION ACCURACY. 

EMI type Device  Make / Model Operating states Actual 
clusters 

Predicted 
clusters Accuracy 

Motor-based 

Vacuum 
Cleaner 

Bissel 6584 Rug / Hardwood / Hose 
3 3 100% 

Hoover Elite II 3 3 100% 
Eureca 1432A Rug / Hardwood 2 2 98.5% 

Blender / 
Food mixer 

Hamilton Beach 62560 
6 Rotation Speed 

6 5 87.4% 
Cuisinart PowerBlend 600 6 6 89.9% 
Oster Listed 654A 6 6 84.0% 

SMPS-based 

Laptop / 
Computer 

Acer Aspire 15” 

Idle / Medium / High Load 

3 3 99.7% 
Dell Inspiron 15” 3 3 98.8% 
Toshiba Portege 13” 3 3 92.1% 
PC (300W) 3 3 100% 

Television Vizio 32” Channel switching (hit rate) 
* * 100% 

Sharp 42” * * 90% 

Mixed Hair Dryer 

Remington Speed2Dry 

Cold / Warm / Hot 

3 3 81.5% 
Tashin Powerslit TS-318A 3 3 81.8% 
Tashin TS-3000 3 3 96.7% 
Gibson GSN-760 3 3 100% 
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channel switching. We only detected two false alarms, showing 
the robustness of our algorithm against this fluctuation.  

Blenders and food mixers show a relatively low accuracy 
(84% ~ 89.9%). The Hamilton food mixer has confusions 
between speed mode 2 and 3, which are merged into the same 
class with low accuracy (recall=54.7%). Similarly, the 
Cuisinart blender has confusions between speed mode 3 and 4 
(recall=64.4%), while the Oster blender exists confusions 
among speed mode 1 (recall=76.5%), 2 (recall=65.9%) and 3. 
These confusions are resulted from the similar characteristics 
between operating states. When we examined the data, we 
found frequency and magnitude of the confused states are quite 
similar. After filtering (Figure 10, the 2nd step), these minor 
differences between states are smoothed out and become hard 
to differentiate. It implies that fundamentally the device does 
not have as many discernible operating speeds as it claims.  

Finally, we saw high variations in accuracy of hair dryers 
(81.5% ~ 100%). For two hair dryers with relatively low 
accuracy (81.5% and 81.8%), the confusion occurs between the 
“cold” and “warm” mode. We observed similarly EMIs in 
these two modes. Our inference is that in the warm mode, the 
parallel resistive load is small in these devices. That is, it does 
not cause discernible changes in the total current loads 
compared to that in cold mode, yielding similar EMI patterns. 
As described earlier, the difference in circuit design between 
hair dryers is attributed to different manufacturers.  

VI. DISCUSSION AND FUTURE WORK 

A. Energy Disaggregation   
In this work, we showed distinct signal characteristics when a 
device operates at different operating states. For the same type 
of devices, we further found that there also exist minor 
differences in their EMI. For example in the Oster blender 
(Listed 564A), we observed a strong EMI between its 
fundamental and 1st harmonic, while we did not see similar 
pattern in other blender or food mixer. Gibson hair dryer 
(GSN-760), instead of a continuous EMI, produces a 
switching-style EMI when operating at cold mode. Similarly in 
Vizio 32” TV, when switching to a new channel, the TV 
produces a transient, scanning-style EMI between 115 ~ 145 
kHz (see Figure 12). This transient signal in spectrum is away 
from its fundamental frequency and was not found on the other 
TV. These small but significant differences between devices 
could provide granular information for manufacturer 

identification and energy disaggregation. Especially for same 
type of devices, their EMI usually overlap at similar frequency 
range (e.g., motor-based devices below 20 kHz). These nuance 
in time-vary EMI can be employed to differentiate them. 

B. Activity Recognition 
Understanding fine-grained electricity data could be beneficial 
to activity-inference researches. For example, different 
behaviors of using a hair dryer (e.g., cold vs. hot) could imply 
different residents within a household. The duration of using 
the vacuum cleaner in different areas (e.g., rug vs. hardwood 
floor) could infer active areas in home. In addition, the 
fluctuating EMI of a blender could attribute to what food is 
being processed; for example, the action of “ice crush” shows 
time-varying EMI during the process. Finally, the action of 
switching a TV channel can be strongly indicative of a 
“watching TV” activity. This interaction between a resident 
and a TV might be difficult to capture through a motion sensor 
[12] as a sensor event does not directly related to the actual 
activity; it can be fired by other possible activities such as 
“reading”, “using a computer” or a pet passing through. We 
believe the finding in this work is the first step to support 
whole-home activity recognition. 

C. Combining Other Sensing Approaches  
While we leverage time-varying EMI for operating states 
estimation, some home appliances such as old washer or fridge 
do not produce observable EMI signals. From an earlier 
survey by Froehlich et al., the on/off states of these devices 
could possibly be extracted from their current or consumption 
data [5]. To collect the aggregated energy usage, we installed 
the experimental sensor provided by Belkin 3  in the 
participant’s house. Figure 13 shows the current loads of a 
stacked washer (General Electric, WSM-2420) in a complete 
high-load washing cycle. The current draws show discernible 
signal patterns in different operating states. Similar varying 
current draws can also be observed on a dishwasher 
(Whirlpool DU810SWP), as shown in Figure 14. To truly 
support the whole home activity inference, we believe it 
requires leveraging both time-vary EMI and disaggregated 
current/power data as we reported in this work. As described 

                                                             
3 Belkin Echo Unit: http://www.belkinbusiness.com/echo-water-0 

 
Figure 12: Time-varying EMI of a TV. This TV produced 

a scanning-style EMI when it switches the channel.  

 
Figure 13: Current loads of a stacked washer, showing 

discernible patterns that represent different stages. 
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earlier, disaggregating current or power usage from the total 
consumption relies on step changes in its signal. It requires 
further signal processing and machine learning technology to 
detect these step changes that attribute to different operating 
states. We leave it as the future work. 

D. Detecting Machine Failure 
The proposed system could also be applied for machine failure 
detection by observing changes in known states or the 
presence of a new, abnormal operating state. For example, a 
blender may show abnormal EMI caused by malfunction in its 
motor (e.g., observing EMI at a lower frequency when running 
at a relatively higher speed). A computer with high magnitude 
EMI in its idle mode may relate to a flawed hardware (e.g., a 
video card). A vacuum with a decreased frequency EMI could 
correspond to a plugged vent filter or even the motor failure. 
In the future, we will further explore these applications. 

VII. CONCLUSION 
In this work, we demonstrate a sensing technique for detecting 
operating states of electronic appliances. Our approach utilizes 
time-varying EMI signal produced by electronic appliances 
when they are operating at different states. This EMI is coupled 
onto the power lines and can be captured using a single sensing 
hardware installed from anywhere in the house. Our algorithm 
used semi-supervised learning for state estimation, which 
exploits domain knowledge of the devices to train the classifier 
and avoids the need of manually labeled data. We show robust 
state estimation of our system through a 16-device study in a 
real home setting. DOSE affords a low-cost, single-point 
sensing approach to discover fine-grained features of electrical 
events for supporting applications such as energy 
disaggregation, machine failure detection or activity inference, 
in a smart home environment. 
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Figure 14: Current loads of a dishwasher. The dishwasher 

was manually turned off after the drying stage began. 
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