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ABSTRACT  
QWERTY  is  the  primary  smartphone  text  input  keyboard  confgu-
ration.  However,  insertion  and  substitution  errors  caused  by  hand  
tremors,  often  experienced  by  users  with  Parkinson’s  disease,  can  
severely  afect  typing  efciency  and  user  experience.  In  this  paper,  
we  investigated  Parkinson’s  users’  typing  behavior  on  smartphones.  
In  particular,  we  identifed  and  compared  the  typing  characteristics  
generated  by  users  with  and  without  Parkinson’s  symptoms.  We  
then  proposed  an  elastic  probabilistic  model  for  input  prediction.  
By  incorporating  both  spatial  and  temporal  features,  this  model  
generalized  the  classical  statistical  decoding  algorithm  to  correct  in-
sertion,  substitution  and  omission  errors,  while  maintaining  direct  
physical  interpretation.  User  study  results  confrmed  that  the  pro-
posed  algorithm  outperformed  baseline  techniques:  users  reached  
22.8  WPM  typing  speed  with  a  signifcantly  lower  error  rate  and  
higher  user-perceived  performance  and  preference.  We  concluded  
that  our  method  could  efectively  improve  the  text  entry  experience  
on  smartphones  for  users  with  Parkinson’s  disease.  
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1  INTRODUCTION  
As  the  world  population’s  average  age  increases,  Parkinson’s  dis-
ease  has  become  a  challenge  for  more  and  more  people.  In  2020,  
the  number  of  Parkinson’s  patients  reached 1  10  million  .  Parkin-
son’s  disease  is  a  long-term  nervous  system  disorder  that  mainly  
afects  the  motor  system.  The  most  common  symptoms  are  the  
"pill-rolling"  hand  tremor  (between  4  –  6  hertz)  and  muscle  rigid-
ity/stifness  [42].  As  a  result,  Parkinson’s  patients  usually  fnd  fne  
motor  movements  (e.g.,  grabbing  spoons  and  pressing  buttons)  dif-
fcult.  Interacting  with  touchscreen  devices  is  a  major  challenge  for  
users  with  Parkinson’s  disease,  specifcally,  inaccurate  input  and  
accidental  touches  signifcantly  limit  their  interaction  performance  
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and  experience  [13,  20–24].  For  example,  when  typing  on  smart- 3.  We  proved  the  high  text  entry  performance  and  usability  of  
phone  QWERTY  keyboards,  inexperienced  users  with  the  hand  our  method  against  baselines  through  an  in-lab,  controlled  user  
tremor  could  only  type  4.7  words  per  minute  (WPM)  [23],  about  evaluation  study.  
11%  of  the  speed  of  young  adults  [2].  

To  improve  the  text  entry  performance  of  users  with  these  symp- 2  RELATED  WORK  
toms,  researchers  have  proposed  several  techniques  (e.g.,  keyboard  In  this  section,  we  describe  related  work  including  studies  describ-
layout  optimization  [11,  27–30],  dynamic  accessibility  confgura- ing  the  efect  of  Parkinson’s  symptoms,  text  entry  methods  for  users  
tion  [34],  tutoring  system  on  a  9-key  keyboard  [8,  9]  and  stroke- with  Parkinson’s  disease,  classical  statistical  decoding  methods,  and  
gesture  text  input  methods  [17,  36,  43]).  Although  these  solutions  related  error  auto-correction  methods.  
have  been  proven  to  be  useful  for  the  motor  impaired  on  various  
platforms  (e.g.,  tablet,  mobile  phone),  they  either  targeted  beginners  2.1  Efect  of  the  Parkinson’s  Symptoms  
or  required  interface  layout  modifcation,  causing  users  to  face  a  

Parkinson’s disease causes multiple motor impairments such aspotentially                   steep  learning  curve  [47].  This  paper  instead  focuses  
hand tremors, muscle rigidity/stifness etc. [42] However, theseon  the  touch-based  software  QWERTY keyboard among                       experi-
symptoms  can  also  occur in other elderly people [13, 21] resultingenced  Parkinson’s  users,  the  most  dominant  text  entry  method  on                   
in difculty interacting with touchscreens [21, 23]. To understandsmartphones,  according  to  our user survey.                         
theSince   efects  of  these  symptoms,  researchers  investigated  users’  inter-  Goodman  et  al.  introduced  the  language  model  to  software  
action behavior with touchscreen phones [13, 20–23].keyboards [7], the statistical decoding method has been widely               They  found                    
that symptoms such as hand tremorsdeployed and proven efective in various text entry scenarios [31,             and  muscle  stifness  have  a                      
signifcantly negative efect on touchscreen interaction tasks, in-32,  44,  48].  The  statistical  decoding method maps touchpoints’ 2D                         
cluding  target  selection  (especially  small  targets)  [13,  20, 21], textcoordinates, also           known  as  the  touch  model,  to  the  word  they  most  
entrylikely   [21,  22],  and  object  manipulation  (e.g.,  zoom  in/out)  [22].    represent,  known  as  the  language  model.  However,  as  we  

Recently,  Nunes  et  al.  [24]  investigated Parkinson’s users’ tap,will show in this paper, users with Parkinson’s disease sufer from                               
swipe,  multiple-tap,  and  drag  gesture  performance  through  a usersignifcantly  higher  insertion  and  omission  errors  that  can       not  be  
study composed of 39 Parkinson’s participants. They observedhandled by classical statistical decoding methods [4, 6]. To correct                 rel-                    
atively poor small keys (79.83% for 7 0 key width) tap accuracy.these  types  of  errors,  researchers have proposed pattern match-             . mm                  
Further,  Nicolau  anding [12]   Jorge  analyzed  the  text  entry  performance      or  machine  learning  based  approaches  [37,  40]  with  their  
ofpenalties tuned manually or trained by machine. These methods   elderly  citizens  with  diferent  severity  hand  tremors  [23].  They                    
found  relatively  high  error  rates  compared  with  young  adults  duelack physical       interpretability,  which  is  difcult  to  generalize  to  
to theother scenarios like ours. To the best of our knowledge, there is no     hand  tremor.  They  suggested  future  work  to  use  temporal                            
and  spatial  features  to  increase  text  entry  performance.  However,existing work that explored an             efective  statistical  decoding  method  
Nicolau  and  Jorge  studied  users  with  no  experience  using smart-for  software  QWERTY  keyboard  to  support  users     with  Parkinson’s  
phone  touchscreens.  As  touchscreens  become  more  ubiquitous,disease.     
we  have  observed elderThis paper presents and evaluates a smartphone QWERTY key-     people  interacting  with  them  much  more                  
frequently [36],board for users with Parkinson’s disease using an elastic proba-     which  leads  to  diferent  usage  habits  and  touch  be-                  
havior.  This  motivates  our  work  to  enhance  text  entry performancebilistic  model.  We frst conducted           a  user  survey  to  explore  how  
for experienced users with Parkinson’s disease.users  input  text  in  a daily scenario, including the most widely used                             

keyboard  layout  and  typing  posture.  Then  we  investigated  and  
compared  the  typing  behaviors  generated  by  both  Parkinson’s  and  2.2  Text  Entry  Methods  for  Parkinson’s  Users  
non-Parkinson’s  users.  Finally,  we  proposed  an  elastic  probabilis- Text  entry  is  one  of  the  most  challenging  tasks  on  smartphones  
tic  model  to  correct  all  major  types  of  errors  while  maintaining  among  elderly  people  with  Parkinson’s  symptoms  [22,  23,  26],  sig-
direct  physical  interpretation  by  incorporating  spatial-temporal  nifcantly  harming  their  user  experience.  When  typing  on  smart-
features.  In  a  second  user  study,  we  evaluated  the  performance  phone  QWERTY  keyboards,  inexperienced  Parkinson’s  users  could  
versus  two  baseline  models:  the  basic  language  model  (BLM)  [7]  only  input  4.73  words  per  minute  (WPM)  [23],  about  11.7%  of  the  
and  elastic  pattern  matching  (EM)  [12].  Results  showed  that  our  speed  of  non-Parkinson  users  [17].  Therefore,  researchers  have  
method  achieves  signifcantly  higher  typing  speed  (22.8  WPM),  explored  solutions  to  solve  this  problem  [3,  9,  9,  27–30,  34].  Ro-
26.8%  and  14.6%  faster  than  BLM  and  EM  respectively;  as  well  as  drigues  et  al.  found  that  highlighting  the  next  most  likely  letter  
lower  word-level  error  rate  (8.0%),  7.1%  (5.5%)  lower  than  BLM  (EM)  for  a  predicted  target  word  or  providing  candidate  words  did  not  
and  keystrokes  per  character  (1.06),  7.8%  (5.5%)  lower  than  BLM  improve  the  text  entry  performance  [27,  28]  for  the  elderly  without  
(EM).  Finally,  users  ranked  our  method  to  be  the  best  in  terms  of  per- touchscreen  experience.  Researchers  also  explored  the  text  entry  
ceived  accuracy,  speed,  error  correction  performance,  confdence,  tutoring  system  [8,  9],  which  automatically  detects  input  stumbles  
and  overall  preference.  This  paper’s  contributions  include:  and  provides  instructions  that  help  users  resolve  them  indepen-

1.  We  built  and  analyzed  the  touch  model  of  experienced  Parkin- dently.  They  showed  that  an  assistive  typing  application  increased  
son’s  users  on  the  software  QWERTY  keyboard,  including  both  typing  speed  by  17.2%  and  reduced  input  stumble  incidence  by  
temporal  and  spatial  features.  59.1%.  Shari  Trewin  described  a  keyboard  that  dynamically  self-

2.  We  propose  a  smartphone  QWERTY  keyboard  for  users  with  adjusts  the  confguration  features,  including  key  repeat  delay,  key  
Parkinson’s  disease  based  on  the  elastic  probabilistic  model.  repeat  rate,  and  debouncing  time  for  accessibility  [34].  Specifcally  
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targeted  at  hand  tremors,  Sarcar  et  al.  found  that  users  with  fnger  is  that  the  calculation  is  based  on  the  shape  of  the  word  patterns,  
tremor  and  dyslexia  can  achieve  4.68  WPM  (14.20%  error  rate)  on  therefore,  is  not  restricted  by  the  number  of  input  points.  However,  
a  standard  QWERTY  keyboard  and  5.35  WPM  (10.61%)  on  their  the  computed  distance  metric  is  usually  nontrivial  to  be  interpreted  
optimized  T9  keyboard  [29,  30].  Jabeen  et.al  [11]  proposed  a  new  as  probability  [14].  Therefore,  researchers  have  to  use  empirically  
keyboard  layout  for  Parkinson’s  users  to  input  Chinese  characters,  determined  parameters  to  incorporate  it  with  language  models.  
achieving  an  average  input  speed  of  3.88  WPM.  Other  researchers  To  our  knowledge,  only  a  limited  number  of  studies  used  machine  
explored  stroke-gesture  text  input  on  touchscreens  [17,  36,  43],  con- learning  based  methods  to  correct  insertion  and  omission  errors  [37,  
sidering  that  sliding  helps  reduce  fnger  oscillation  [17,  38].  For  40].  These  were  achieved  by  introducing  corresponding  penalties  
example,  EdgeWrite  used  an  assistive  piece  of  hardware  to  guide  that  were  trained  using  machine  learning  or  tuned  manually  (as  
stroke  input  [43]  and  users  achieved  6.6  WPM  text  input  perfor- opposed  to  summarized).  Therefore,  these  methods  lack  physical  
mance.  interpretability  and  require  initial  calibration  [37].  

Although  these  solutions  have  been  proven  useful  for  motor  
impaired  users  on  various  platforms  (e.g.,  tablet,  mobile  phone),  they  3  TEXT  ENTRY  OF  PARKINSON’S  USERS  IN  
either  targeted  beginners  or  modifed  interface  layouts  with  could  DAILY  LIVES  
result  in  a  signifcant  learning  barrier  [47].  Therefore,  in  contrast  We  conducted  a  survey  to  explore  how  Parkinson’s  users  input  text  
to  prior  work,  we  focused  our  study  on  the  common  tap-based  on  their  smartphones  daily.  Specifcally,  we  are  interested  in  typing  
software  QWERTY  keyboard,  the  dominant  text  entry  method  on  posture  and  keyboard  layout.  
touchscreen  phones  among  experienced  Parkinson’s  users.  We  interviewed  16  participants  (7  males,  9  females)  with  Parkin-

son’s disease. Their average age was2.3 Classical Statistical Decoding Algorithm             67.9  (s .d .    10.6),  the  partici-
          

=

pants,  on  average,  have  had  the  disease  for  8.4  years  (s .d .  =  7.6),  
The  classical  statistical  decoding  algorithm  is  a  probabilistic  model  and  were  at  stage  2.5  (s .d .  =  1.5)  of  Parkinson 2  disease  .  We  con-
that  calculates  the  likelihood  of  each  word  in  a  pre-defned  dic- ducted  surveys  over  online  video  calls  so  that  participants  could  
tionary  according  to  the  user’s  input  and  recommends  the  word  demonstrate  their  daily-used  typing  postures  and  keyboard  layouts.  
with  the  highest  likelihood.  This  algorithm  was  frst  proposed  by  First  we  asked:  "What  kind  of  text  input  method  you  use  in  a  daily  
Goodman  et  al.  [7],  which  yields:  scenario?"  If  the  answer  included  a  software  keyboard  we  asked  

following  two  questions:  1)  "Which  layout  do  you  utilize  when  
P(W  |I  ) ∝  P(I  |W  ) ×  P(W  )  (1)  entering  text  on  your  smartphone  keyboard?"  2)  "What  typing  pos-

Where  I  is  a  series  of  input  points,  W  is  a  candidate  word,  P(W  ) tures  do  you  use  in  daily  lives?  Please  rate  the  frequency  of  usage  
quantifes  the  probability  of  W  ,  and  P(I  |W  )  models  the  noise  in  (5-point  Likert  scale,  4  - all  the  time,  0  - never)."  Each  participant  
users’  typing  behavior.  So  far,  this  statistical  decoding  algorithm  has  was  given  a  5  USD  gift  card  as  compensation.  
been  proven  efective  in  many  smart  keyboard  techniques  (e.g.,[4,  
6,  39,  40,  44]).  3.1  Results  

The  principled  probabilistic  theory,  which  enables  the  calculation  Among  the  participants,  13/16  used  a  QWERTY  keyboard  for  en-
to  be  interpreted  as  a  probability,  is  an  advantage  of  the  classical  sta- tering  text  on  their  smartphones,  while  3/16  used  voice  assistants  
tistical  decoding  algorithm.  Therefore,  the  algorithm  can  be  easily  for  text  entry.  Surprisingly,  although  T9  keyboard  has  larger  key  
incorporated  with  a  language  model  or  other  input  channels  (e.g.,  sizes  than  QWERTY  keyboards,  none  of  the  participants  chose  T9  
accelerometer  [5,  25]).  Further,  the  calculation  of  P(I  |W  )  can  be  sim- for  text  entry.  Through  the  interview,  P1,  P6,  P7,  P8,  P12,  and  P13  
plifed  to  Equation  2  by  assuming  that  touchpoints  are  independent  commented  that  they  can  type  faster/with  more  comfort  on  the  QW-
of  each  other.  As  a  result,  the  classical  statistical  decoding  method  ERTY  keyboard;  P2,  P6,  P9,  P14,  and  P15  commented  that  they  have  
models  spatial  touchpoint  distribution  (ofset  and  spread  of  size)  gotten  used  to  the  QWERTY  keyboard  layout  after  using  it  for  many  
for  each  individual  key  using  Bivariate  Gaussian  distribution  [2,  7].  years.  P3,  P10,  and  P16  commented  that  the  QWERTY  keyboard  
A  language  model  can  calculate  the  a  list  of  probable  next  charac- layout  was  the  default  when  they  started  to  use  the  smartphone.  
ters  for  each  touchpoint.  However,  the  classical  statistical  decoding  We  studied  fve  diferent  postures  that  are  common  among  the  13  
algorithm  can  not  correct  insertion  or  omission  errors  [4,  6],  which  participants  as  illustrated  in  Figure  1:  1)  one  hand  holding  the  phone  
are  common  among  users  with  the  hand  tremor.  in  the  air  while  the  other  hand’s  index  fnger  types;  2)  one  hand  

holding  the  phone  on  a  stable  surface  (i.e.,  table)  while  the  other  ÖN   hand’s  index  fnger  types;  3)  place  the  phone  on  a  stable  surface  
P(I  |W  )  =  P(Ii  |Wi  )  (2)  (i.e.,  table)  while  one  index  fnger  type;  4)  two-thumbs  typing  in  

i=1  the  air;  and  5)  place  the  phone  on  a  stable  surface  (i.e.,  table)  while  

2.4  Correcting  Insertion  and  Omission  Errors  two  index  fngers  type.  
Figure 1 showsPattern matching, which calculates the “distance” between the in-       the  frequency  of  diferent  typing  postures.  No-                

ticeably, one index fnger typing was preferred byput pattern and the pattern of candidate words then recommends                 Parkinson’s  users                      
over two-thumb typing, which is diferent from non-Parkinson’sthe  word  with  the  smallest  distance,  is  one  major  approach  for  cor-                 
usersrecting insertion and omission   [2].  This  result  aligns  with  prior  work  [22,  23,  35]  regard-        errors.  Pattern  matching  is  the  key  
ing dexterity impaired users’ preferred typing posture. Specifcally,algorithm  for  gesture  keyboards  [14, 46].                     By  comparison,  less  work  

has  applied  it  to  typing  [12,  15].  The  merit  of  pattern  matching  2https://www.healthline.com/health/parkinsons/stages  
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Figure 1: Frequency of diferent typing postures. Error bar 
indicates one standard error. 

Table  1:  Error  rate  of  diferent  typing  error  categories.  

 Insertion  substitution  Omission  Transposition  Overall 
 Parkinson’s  yes  no  yes  no  yes  no  yes  no  yes  no 

 Mean  Error  Rate  6.63%  0.25%  12.38%  3.47%  1.13%  0.17%  0.10%  0.07%  20.24%  3.96% 
 SD  1.24%  0.08%  5.12%  1.05%  0.33%  0.08%  0.04%  0.04%  5.66%  1.17% 

         
          

     

Figure 2: (A) Experiment platform, shows the target string 
and the current entered text in asterisk. (B) Typing posture 
adopted by all the participants. 
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4.1  Participants  
12/13  participants  chose  posture (1) as                       the  most  frequently  used  We recruited 8 Parkinson’s users (3 females, 5 males,  all  right-
typing posture. During the interview, P1, P3, P7, P8, P10, P12, P13                                                 handed) with a mean age of 60.5 (s .d . = 9.2, distributed between
and  P16  mentioned  about  reasons  being  the  hand  tremor and the 47  and  72)  from  a                  local Parkinson’s foundation. 7/8 participants
stifness  issues.  Therefore  they  preferred using the other hand                 to  were diagnosed with moderate  or  severe  tremor  symptoms  in  both  

hold the phone steady. P2                               and  P12  both  commented  that      hands. The remaining participant had a slight hand tremor symptom“I feel
;                       uncomfortable  and  stif  typing  with  two  hands  ”   Moreover,  postures  in his left hand. We also recruited 8 non-Parkinson young adults

(2) and (3) all used a surface (i.e., table) to provide stable support for (5  females,  3  males,  all                                              right-handed ) with a mean age of 23.6
the phone, which (s .d .  =  3.7)                                      as our control group. All 16 participants utilized  a  “was very helpful to relieve the shaking problem

        (P1-P2,  P7-P10,  P12)                           QWERTY keyboard for smartphone text entry in their daily lives.  from the hand tremor” “helpful towards the
              fatigue  after  typing        (P3,  P10,  P14).  Each participant was compensated with 20 USD.for a while”

In  conclusion,  we  believe  that  it  is  important  to  optimize  the  
current  QWERTY  keyboard  on  smartphones  for  Parkinson’s  users  4.2  Apparatus  and  Platform  
since  it  is  still  the  most  dominant  text  entry  method.  Parkinson’s  We  used  a  Google  Pixel  3A  phone  (PPI  =  441)  in  this  study,  with  
users  prefer  a  one-index-fnger  typing  posture  rather  than  two- each  pixel  measuring  0.057mm.  Figure  2  showed  the  experiment  
thumb  typing  [23]  due  to  the  hand  tremor  and  stifness.  They  prefer  platform.  Similar  to  commercial  keyboards,  we  rendered  each  key  
to  place  the  phone  on  a  stable  surface  (i.e.,  table,  leg)  to  relieve  the  on  the  keyboard  to  be  6mm(W  ) ×  9mm(H ).  During  typing,  the  
fatigue  and  hand  tremor  problems.  Therefore,  we  deploy  on  a  one- platform  showed  asterisk  feedback  upon  each  touch.  
index-fnger  typing  posture  in  our  studies.  

4.3  Experiment  Design  and  Procedure  
4  MODELING  THE  TYPING  BEHAVIOR  We  used  a  between-subject  design  in  this  study,  with  Hand  Tremor  
We  conducted  a  user  study  to  investigate  Parkinson’s  users’  typ- (with  vs.  without)  as  the  only  factor.  Upon  arrival,  each  partici-
ing  behavior  on  smartphone  keyboards  and  compared  it  to  that  of  pant  provided  his  or  her  age,  Parkinson’s  disease  history,  and  hand  
non-Parkinson’s  young  adults.  As  a  result  of  the  previous  section’s  tremor  severity.  Then  they  spent  several  minutes  familiarizing  them-
fndings,  we  chose  the  QWERTY  keyboard  layout  in  this  study.  Also,  selves  with  the  experiment  platform.  Each  participant  completed  
to  ensure  that  we  observed  the  most  intrinsic  user  typing  pattern  two  blocks  of  text  entry  tasks  during  the  study,  each  consisting  
without  bias  towards  any  specifc  input  prediction  algorithm,  we  of  25  phrases  randomly  sampled  from  the  Mackenzie  and  Souko-
used  asterisk  feedback  (Figure  2)  as  with  other  works  [2,  44].  We  ref  phrase  set  [19].  A  5-minute  break  was  enforced  between  the  
were  interested  in  not  only  users’  typing  speed  and  touchpoint  two  blocks.  We  frst  confrmed  with  all  the  Parkinson’s  users  that  
distribution,  but  also  their  error  patterns  (e.g.,  frequency  and  spa- posture  (1)  and  (2)  (see  Figure  1)  were  the  most  frequently  used  pos-
tial/temporal  features).  tures.  However,  to  avoid  muscle  fatigue  during  this  study,  we  asked  



                    

               Figure 3: the density distribution of unintentional repetitive touches (orange) and regular intentional touches (blue). 
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all  the  16  participants  to  adopt  posture  (2)  with  a  table  where  they  4.4.2  Typing  Errors.  Table  1  showed  the  error  rate  of  diferent  
can  rest  their  arms.  When  entering  each  phrase,  the  participants  types  of  typing  errors.  Overall,  the  error  rate  of  participants  with  
were  asked  to  “type  as  quickly  and  accurately  as  possible”  [23],  and  and  without  Parkinson’s  was  20.2%  and  4.0%,  respectively.  
not  to  correct  any  errors.  We  analyzed  the  error  rate  of  diferent  types  of  typing  errors.  We  

found  similar  results  as  prior  work  [23]  including  that  substitution  
4.4  Results  and  omission  are  the  two  most  common  typing  errors  in  a  mobile  

device  text  entry.  Further,  compared withWe collected 9,441 and 9,112 touch points from Parkinson’s users     non-Parkinson  users,                      
Parkinson users yielded signifcant more insertion ( 14 5and  non-Parkinson’s  users,  respectively.  As  hand  tremorsmay cause             t14  =  . ,d          =

7 3 001), substitution (various kinds of typing errors (e.g., insertion and omission), we . ,  p  < .     t14  =  4.8,  d    2.4,  p  < .001),  and                      =

omission  errors  (t14  =  8.0,d  =  4.0,p  < .001),  but not transpositionmanually  labeled  all  the  collected  touch  points  with  the         target  
errors (characters. Firstly,   t14   1.5,p      we  mapped  touchpoints  to  characters  using  the    = =  .16).  

When comparing our results with prior work [23], we observednearest  distance  to  each  key’s centroid. Then, three annotators                               
smaller  overall  error  rate  (20.24%  v.s.  25.97%).  Specifcally,  our  re-discussed  and  labeled  the  input  string  by  comparing  it  to  the  target  
sults  yielded  astring, with the help of the video recording. We discarded data   higher  substitution  error  rate  (12.38%  v.s.  7.80%)  and                        
a higher insertion error rate (6.63% v.s. 5.50%), but a lower omis-points  that  were  not  successfully  labeled  totalling  197  (2.1%)  and                         
sion error rate (1.13% v.s. 12.65%). We believe the reasons for this134  (1.4%)  for  Parkinson’s  and  non-Parkinson’s  users  respectively.                           
discrepancy are: 1) experience inAll metrics are normally distributed (p > .05) based on the Shapiro-           using  the  QWERTY  keyboard;  2)                        
cognitive issues; 3) keyboard size. Hugo Nicolau and JoaquimWilk test. We used independent samples t-test (with Cohen’s d) for                   Jorge                        
studied elder users with hand tremors who had nostatistical tests and reported a signifcant diference with                   experience  using                  p  < .05.  
the  QWERTY  keyboard  on  smartphones.  Further,  they  concluded  

4.4.1  Text  Entry  Speed.  We  measured  the  text  entry  speed  in  Words  that  forgetfulness  and  coordination  issues  caused  the  high  omis-
Per  Minute  (WPM),  which  was  calculated  using  the  formula  in  [18]:  sion  error  rate  they  observed.  Finally,  Nicolau  and  Jorge  studied  

mobile  keyboards  in  the  landscape  mode  because  they  are  larger  
|T  | −  1 1

WPM  =  ×  60  ×  (3) than  portrait  mode.  However,  in  our  study,  all  participants  use  the  
S  5  QWERTY  keyboard  layout  on  their  smartphones  during  daily  life  

where  |T  |  denotes  the  length  of  target  phrase,  S  denotes  the  time  in- without  reported  cognitive  issues.  Further,  participants  in  our  study  
terval  in  seconds  between  the  frst  and  the  last  touch  when  entering  were  familiar  with  the  keyboard  in  portrait  mode  notwithstanding  
the  phrase.  smaller  key  size.  

Our  results  show  that  the  average  speed  of  Parkinson’s  and  
Our results indicate that un-non-Parkinson’s  users 4.4.3  Unintentional  Repetitive  Touch.            were  19.8  WPM  (s .d .  =  6.9)  and  29.4  WPM  

intentional repetitive( 8 9) respectively. As expected, Parkinson’s users reached     touches  caused  most  of  the  insertion  errors  
s .d .  =  .               

observed (480 613 78 3%). We noticed thatsignifcantly lower text entry speed than non-Parkinson’s users   /   =  .         unintentional  repeti-                
tive  touches  have  a  relatively  shorter  time  interval  and shift( 4 64 2 3 001). Our results difer from prior     from  

t14  =  − . ,d  =  . , p  < .             
the last touch coordinate, whereas regular touches exhibited morework [2, 17] evaluating the typing performance on both elder (22.8                                         
diverseWPM) and young groups (36.34 WPM). This is because we didn’t   spatial-temporal  correlation.  To  model  this,  we  adopted                        
Gaussiantake the SPACE character into consideration. When counting the   kernel  density  estimation  (KDE)  to  estimate  the  proba-                  
bility density function — ofSPACE  character, we         P (x)    time  interval  (x1 =  T  (I ,  I 1))      observed  similar  typing  speed  with  prior  work.  H    i  i−

However, inexperienced users ×  distance  (x2 =  D(I ,  I 1))  of  two  adjacent  touch  points  —  I and        with  a  hand  tremor  can  only  achieve    i  i− i  
Ii−1  respectively, as Equation 4 shows:4.73  WPM  [23],  which             indicates  the  necessity  for  this  user  study  

modeling  experienced  Parkinson’s  user’s  typing  behavior.  1 Õ  n  
PH  (x)  = KH  (x  −  xi)  (4)  

n  i  =1  
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Figure 3 shows the density distributions of unintentional repet-
itive touches in orange contours and regular intentional touches 
in blue contours. The centroid of unintentional repetitive touches 
density distribution is 2.4 mm and 185 ms. Compared with users 
without a hand tremor [10], hand tremors caused a longer distance 
between adjacent touches. Further, touch time interval aligns with 
the frequency (4 - 6 Hz) of the hand tremor in Parkinson’s disease. 
Hugo Nicolau and Joaquim Jorge found similar results on the time 
interval [23]. 

Our work proves the feasibility of leveraging the spatial-temporal 
features to classify unintentional repetitive touches from regular 
touches. Results indicate that there are distinguishable distributions 
among these two types of touches, implying that we can flter out 
unintentional repetitive touches. We utilized second-order Gaussian 
kernel as our kernel function — K . The KDE bandwidth — H are 
counted from the unintentional repetitive touchpoints and regular 
touchpoints as 0.24 and 0.40. 

4.4.4 Touch Point Distribution. Figure 4A and B illustrate the collec-
tive touchpoints merged from all Parkinson’s and non-Parkinson’s 
participants over a 1:1 sized keyboard. Similar to prior work [2, 41], 
even for Parkinson users, the endpoints for each key roughly fol-
lowed a 2-dimensional Gaussian distribution. We report the results 
for the space key separately because it is diferent from the alpha-
betical keys in both form and function. 

Systematic Ofset. We defne systematic ofset as the distance 
between the touch point cloud centroid and the target key center. 
A positive ofset in x and y dimension indicated that the users 
hit to the right and bottom of the target key center, respectively. 
Figure 4C and D show the average ofsets among the alphabetic 
keys for Parkinson’s and non-Parkinson’s users. 

Users tended to touch to the lower-right of the key center. The 
average Ofsetx of Parkinson’s users and the non-Parkinson’s users 
was 1.19 mm (s .d . = 0.59) and 0.57 mm (s .d . = 0.33) respectively, 
and Ofsety was 0.82 mm (s .d . = 0.23) and 0.43 mm (s .d . = 0.22) 
respectively. Parkinson users yielded signifcantly greater Ofsetx 
(t50 = 4.7,d = 1.3, p < .001) and Ofsety (t50 = 6.2, d = 1.7,p < 
.001) than non-Parkinson’s users, confrming that they had more 
difculty performing fne motor control tasks. 

For Parkinson users, Ofsetx tended to be smaller for keys on 
the right side of the keyboard. The average Ofsetx of left-end keys 
(‘Q’, ‘A’ and ‘Z’) and right-end keys (‘P’, ‘L’ and ‘M’) were 1.55 mm 
(s .d . = 0.36) and 0.67 mm (s .d . = 0.44), respectively. A signifcant 
efect of side on Ofsetx was found (t24 = 5.6, d = 2.2, p < .001). 
However, we did not fnd such efect on Ofsety (t24 = 0.4,p = .71). 
For non-Parkinson users, there was no signifcant efect of side on 
either Ofsetx or Ofsety . 

Spread of Touch Point. To measure spread size, we calculated 
SDx and SDy , the standard deviations of the touch point locations 
in the x and y directions. The average SDx and SDy across all 
keys were 1.17 mm (s .d . = 0.13) and 1.14 mm (s .d . = 0.10) for 
Parkinson’s users, and were 1.00 mm (s .d . = 0.13) and 0.97 mm 
(s .d . = 0.11) for non-Parkinson’s users. Parkinson’s users yielded a 
signifcantly wider spread on touch points on both x (t50 = 4.7, d = 
1.3,p < 0.001) and y (t50 = 5.8, d = 1.6, p < 0.001) directions (see 
Figure 4). 

Yuntao Wang, et al. 

Space Key. Similar to other keys, users tended to touch to the 
lower-right of the space key center. The average Ofsetx of Parkin-
son’s users and the non-Parkinson’s users was 2.42 mm and 1.63 

Figure 4: (A) Touch point distribution across all Parkin-
son’s users. (B) Touch point distribution across all non-
Parkinson’s users. (C) Systematic ofset of each key across 
all Parkinson’s users. (D) Systematic ofset of each key 
across all non-Parkinson’s users. We show 95% confdence 
ellipses over a 1:1 outline on each key. 



                    

        
    

Figure 5: One example demonstrating diferent error types 
highlighted in diferent colors. 
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mm  respectively,  and  Ofsety  was  2.17  mm  and  0.76  mm  respec-
tively.  Parkinson  users  have  greater  SDx  and  SDy  than  non-Parkinson
users  on  the  space  key.  The  average  SDx  of  Parkinson’s  users  and  
the  non-Parkinson’s  users  was  15.87  mm  and  10.44  mm  respectively,  
and  SDy  was  5.36  mm and  4.35  mm  respectively.  

5  ELASTIC  PROBABILISTIC  MODEL  
In  this  section,  we  propose  an  elastic  probabilistic  model  to  pre-
dict  users’  input  when  various  types  of  typing  errors  exist  at  the  
same  time.  As  mentioned  in  Related  Works  section,  the  classical  
statistical  decoding  algorithm  can  only  compute  the  probability  of  
diferent  words  whose  length  was  identical  to  the  input  sequence  
(e.g.  [7,  44]),  which  limited  the  usability  of  such  techniques,  espe-
cially  when  the  frequency  of  these  types  of  errors  were  relatively  
high  (e.g.  for  Parkinson’s  users).  And  although  some  algorithms  can  
handle  insertion/omission  errors  by  introducing  penalties  (e.g.,  Ve-
lociTap  [37]),  the  value  of  the  parameters  was  manually  optimized,  
which  was  not  designed  to  have  a  direct  physical  interpretation.  
Our  goal  is  to  generalize  the  classical  statistical  model  based  on  
probabilistic  theory,  which  will  introduce  two  advantages:  1)  All  the  
parameters  have  direct  physical  interpretation,  which  can  be  easily  
calculated  (as  opposed  to  be  trained)  based  on  collected  user  data;  
2)  The  calculated  result  can  be  interpreted  as  “probability”,  making  
it  possible  to  incorporated  with  other  signal  data  (e.g.  accelerator  
data  [5]).  

5.1  Problem  Defnition  
We  frst  revisit  input  prediction  problem:  Given  a  series  of  touch  
input  points  I  =  I1I2...In  ,  for  each  candidate  wordW  =  W1W2...Wm  
in  a  predefned  language  model,  calculate  the  probability  P(W  |I ).  
According  to  Bayesian  rule,  the  key  is  to  calculate  P(I  |W  )  (see  
Equation  1).  Notice  that  m  and  n  can  be  unequal  when  assuming  
insertion/omission  errors  may  occur.  Therefore  the  major  challenge  
is  to  deduce  the  equation  of  calculation  for  each  specifc  category  
of  typing  errors.  

Based  on  diferent  mappings  between  Ii  and  Wj  ,  typing  errors  
can  be  categorized  into  four  kinds,  as  illustrated  in  Figure  5:  

(1)  Insertion  Error:  a  redundant  touch  Ii  that  does  not  map  to  
any  of  the  target  characters.  

(2)  Omission  Error:  a  character  Wj  that  does  not  map  to  any  
of  the  input  touch  points.  

(3)  Substitution  Error:  a  touch  Ii  for  character  Wj  ,  but  landed  
on  other  keys.  

(4)  Transposition  Error:  swap  touches  Ii−1  and  Ii  for  charac-
ters  Wj−1  and  Wj  .  

5.2  Algorithm  Deduction  
To  calculate  the  probability  P(I  |W  ),  we  frst  assign  Pi  ,  Po  ,  Ps  and  Pt  
to  the  probability  of  insertion,  omission,  substitution  and  transpo-
sition  errors,  respectively.  In  practice,  these  values  can  all  be  easily  
calculated  based  on  the  user’s  typing  data.  Assuming  that  the  map-
ping  between  I  and  W  is  known  (i.e.,  we  can  determinately  label  
all  kinds  of  typing  errors),  the  calculation  of  P(I  |W  )  is  intuitive:  

We  defne  Fi,  j  as  the  conditional  probability  for  I  =  I1I2...Ii  and  
W  =  W1W2...Wj  ,  where  1  ≤  i  ≤  n  and  1  ≤  j  ≤  m,  then  we  can  
calculate  the  value  of  Fi,  j  as:  

’s  Fi−1,  j  ×  Pi  (Ii  |Ii−1)  Fi,  j−1  ×  Po
Fi,  j  =  (5)Fi−1,  j−1  × (1   −  Po  ) ×  Ps  (Ii  |Wj  ) ×  P con   2   Fi−2,  j−2  ×  (1  −  Po  ) ×  Pt  r  ans  

where  �1  −  Pt  if  Ii−1  matches  Wj−1  
Pcon  =  (6)  1  else  

and  �
Pt  if  Ii−1Ii  =  WjWj−1  

Pt  r  ans  =  (7)  0  else  

Given  that  F0,0  =  1,  we  can  iteratively  use  Equation  5  to  calculate  
P(I  |W  )  =  Fn,m  .  It  is  easy  to  fnd  that  the  calculation  of  Fi,  j  gen-
eralized  the  classical  statistical  decoding  algorithm  [7]  based  on  
probabilistic  theory,  therefore  the  result  has  direct  physical  inter-
pretation.  Specifcally,  if  we  assume  that  Pi  =  Po  =  Pt  =  0  (i.e.,  
there  are  no  insertion/omission/transposition  errors),  Equation  5  
would  degenerate  to  Equation  2.  

So  far,  we  have  assumed  that  the  mapping  between  I  and  W  is  
known.  However,  in  practice,  the  mapping  should  be  inferred  by  the  
algorithm.  To  achieve  this,  we  used  dynamic  programming  similar  
to  Levenshtein  distance  [16]:  upon  each  touch  input,  we  update  Fi,  j
as  the  highest  value  of  the  four  possibilities.  To  accelerate  the  real-
time  computation  speed,  we  can  build  a  tree  based  on  the  corpus  
and  use  incremental  computing  and  pruning  techniques  (e.g.,  beam  
pruning)  to  avoid  repetitive  searches  and  prune  impossible  results.  

5.3  Dynamic  Parameter  Adjustment  
Equation  5  generalized  the  classical  statistical  decoding  algorithm  
to  correct  insertion,  omission  and  transposition  errors.  However,  
a  limitation  of  this  model  is  that  the  probability  of  diferent  types  
of  errors  are  fxed,  which  ignores  some  useful  features  exhibited  
in  user’s  typing  behaviors.  For  example,  in  Figure  3,  unintentional  
repetitive  touches  and  regular  touches  are  highly  distinguishable  
based  on  spatial-temporal  features.  To  achieve  this,  we  further  
improved  EPM  by  dynamically  calculating  Pi  based  on  the  input  as  

′    
Pe u  (x)  +  P .  P  

′

represents  a  fxed  insertion  error  rate  (133/   = i    9244i
1.44%)  that  excludes  all  unintentional  repetitive  touches.  Peu  (x)  is  
calculated  as:  

ωPu  (x)
Peu  (x)  =  (8)

Pu  (x)  +  Pr  (x)
Where  Pu  (x)  and  Pr  (x)  represent  the  probability  density  function  

of  unintentional  repetitive  touches  and  regular  touches  (Equation  
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4). x = [T (Ii , Ii−1), D(Ii , Ii−1)]. ω denotes as the weight (5.19%, 
480/9244) counted from the unintentional repetitive touches. 

6 USER EVALUATION STUDY 
In this section, we describe a user study designed to compare 
and evaluate the performances of the proposed auto-correction 
techniques. Then we report the major results and fndings of our 
method versus other baseline auto-correction methods. We used 
RM-ANOVA (p < .05) with the Tukey post-hoc analysis and (partial) 
eta squared as the efect size for parametric analysis. We utilized 
Friedman test (p < .05) and Wilcoxon signed-rank test (p < .05) for 
non-parametric analysis. We compared the typing speed, character 
error rate, word-level error rate, keystrokes per character, and user 
feedback. All metrics fall into a normal distribution (p > .05) using 
the Shapiro-Wilk test. 

6.1 Participants 
We recruited 8 participants with Parkinson’s disease (3 females, 5 
males, all right-handed) with an average age of 59.9 (s .d . = 7.0). All 
participants were regular users of the QWERTY keyboard on their 
smartphones. 3 (4) of the 8 participants have severe (moderate) hand 
tremor symptoms. The remaining participant was treated with deep 
brain surgery and has slight hand tremor symptoms. 4 participants 
attended our prior study. Each participant was compensated 30 
USD. 

6.2 Experiment Design 
We used a within-subjects single-factor design, with Technique be-
ing the only factor. Specifcally, we tested four diferent techniques: 
EPM with dynamic parameter adjustment feature (D-EPM), EPM 
with constant error probabilities (C-EPM), basic language model [7] 
(BLM) and elastic pattern matching (EM) [12, 15, 45]. For language 
model, we used the top 60,000 words and their corresponding fre-
quencies in the American National Corpus frequency data [1]. In 
our implementation, we set Ps to 12.38%, Po to 1.13%, and Pt to 
0.1% according to the typing data from section 4 for C-EPM and 
D-EPM. We set Pi to 6.63% for C-EPM and Pi 

′ 
to 1.44% for D-EPM 

(see section 4.4.2). 
We chose the Basic Language Model as the frst baseline, as it 

is the most widely adopted algorithm. We adopted the Bayesian 
decoding algorithm (zero-order) proposed by Goodman et al. [7]. 
This method assumes that the user manually corrects insertion, 
omission, and transposition errors. Therefore, it could only correct 
substitution errors. To establish a more cutting-edge technique for 
other typing errors, we built another baseline method — elastic 
pattern matching. 

Elastic Pattern Matching was the second baseline. It has been 
proved efectively correct typing errors caused by the motor im-
pairment [12]. Elastic Pattern Matching calculates the similarity 
between candidate words and the user touch sequence through 
pattern matching. To measure the similarity, we utilized a weighted 
minimum string distance (wMSD) score proposed by [12]. 

Our keyboard interface allowed Users to tap on the top 5 candi-
date words to select. Further, they are free to correct the input or 
not. We took mis-taps into the calculation for all metrics. 

Yuntao Wang, et al. 

6.3 Procedure 
First, we introduced participants to the purpose of the user study 
and text entry application on the Google Pixel 3A smartphone. We 
only informed them that we want them to experience our key-
board without telling them there is a diference among methods. 
We then collected information using a background information 
survey, including participant age, gender, keyboard layout, and 
typing posture. Participants were instructed to experience four 
auto-correction techniques during the warm-up session. Finally, 
they fnished two test sessions covering all four auto-correction 
methods. Each session comprised 25 sentences, which were ran-
domly sampled from the phrase set proposed by Mackenzie and 
Soukoref [19]. We then repeated another four test sessions. The or-
der of auto-correction method was counter-balanced among users. 
We instructed the participants to “type as quickly and accurately 
as possible”. The candidate words and characters in the current 
word were shown in plain text. We asked all participants to take 
a 5-minutes break between each session. The experiment lasted 
around 60 minutes in total. Therefore, we obtained 4 methods × 2 
repeats × 25 sentences = 200 sentences for each participant. 

All participants completed a survey directly following each auto-
correction method. We did not mention any method diference 
among sessions. They were free to change their previous ranked 
scores. After the experiment, participants were asked to revise 
the fnal scores of all four surveys. We asked them to rank the 
following 5 questions in a 7-point Likert scale (1: strongly disagree, 
4: neutral, 7: strongly agree): 1. I think I can type accurately using 
this keyboard; 2. I think I can type fast using this keyboard; 3. This 
keyboard would correctly predict the word I’m typing; 4. I spend 
less mental efort to tap each key accurately; 5. I prefer using this 
keyboard. 

6.4 Typing Speed 
Figure 6 compares participants’ typing speed while using 4 auto-
correction methods. Results show that D-EPM achieves the highest 
typing speed with an average of 22.8 WPM (s .d . = 10.0) while BLM, 
EM and C-EPM achieve 18.0 (s .d . = 9.5), 19.9 (s .d . = 10.4), and 21.3 
(s .d . = 9.0) WPM respectively. All participants achieved a higher 
average typing speed with the elastic probability model than the 
basic language model. RM-ANOVA analysis indicates that there 
are signifcant diferences (F3,60 = 4.51, η2 = 0.18,p < .05) among 
auto-correction methods. D-EPM achieves signifcantly higher typ-
ing speed than BLM (p < .001) and EM (p < .01) with an average 
increase of 26.8% and 14.7%. However, there is no signifcant dif-
ference between D-EPM and C-EPM (P = .07) with an average 
increase of 7.0%. 

6.5 Character Error Rate 
We measured the character error rate (CER), which is a common 
metric for evaluating text entry techniques (e.g., [37, 44]). CER can 
be interpreted as the minimum number of insertions, substitutions, 
and deletions required to transform the transcribed string into the 
target string divided by the number of characters in the target 
string. 

Results show that D-EPM achieves the lowest CER — 22.4% 
(s .d . = 15.7%) while BLM, EM and C-EPM achieve 29.2% (s .d . = 
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Figure  6:  Typing  speed  comparison  among  4  auto-correction  
techniques  for  each  participant.  The  error  bars  represent  the  
standard  deviations.  

20.5%),  34.5%  (s .d .  =  22.9%),  and  23.0%  (s .d .  =  16.2%)  respectively.  
There  is  signifcant  efect ( 2    F3,60  =  5.12,  η =  0.20,  p  < .01)  of  auto  
correction  methods  on  the  CER.  Tukey  post-hoc  analysis  shows  
that  both  C-EPM  and  D-EPM  yeild  signifcantly  CER  than  BLM  and  
EM  (p  < .05).  However,  there  is  no  signifcant  diference  between  
the  D-EPM  and  C-EPM  methods  (F3,60  =  1.22,p  =  .08).  

6.6  Word-Level  Error  Rate  
We  measured  word-level  error  rate  calculated  as  the  probability  of  
the  incorrect  input  word  that  is  not  in  the  targeted  string.  Results  
show  that  D-EPM  achieves  the  lowest  error  rate  —  8.0%  (s .d .  =  
14.1%)  while  BLM,  EM  and  C-EPM  achieve  15.1%  (s .d .  =  21.5%),  
13.5%  (s .d .  =  21.8%),  and  9.6%  (s .d .  =  17.7%)  error  rates  respectively.  
Auto-correction  method  signifcantly 2  afects  (   F3,60  =  7.34,  η =  
0.27,p  < .001)  word-level  error  rate.  Tukey  post-hoc  analysis  
shows  that  both  C-EPM  and  D-EPM  yield  signifcantly  lower  error  
rate  than  BLM  and  EM  (p  < .05).  However,  there  is  no  signif-
cant  diference  between  the  D-EPM  method  and  C-EPM  method  
(F3,60  =  1.09,  p  =  .28).  

6.7  KSPC  
We  used  keystroke  per  character  (KSPC)  [33]  to  measure  keyboard  
performance.  A  lower  KSPC  indicates  that  the  user  expends  less  
efort  in  modifying  the  input.  KSPC  is  calculated  as  the  ratio  of  the  
number  of  touches  over  the  length  of  the  targeted  word.  Results  
show  that  D-EPM  achieves  the  best  KSPC  performance  with  an  
average  value  of  1.06  (s .d .  =  0.17).  There  are  signifcant  diferences  
( 2  F3,60  =  15.8,  η =  0.44,p  < .001)  among  auto-correction  methods.  
Tukey  post-hoc  analysis  indicates  that  D-EPM  achieves  signifcantly  
lower  KSPC  than  BLM  (KSPC  =  1.15,  p  < .01)  as  well  as  EM  (KSPC  =  
1.23,  p  < .01),  suggesting  that  our  method  is  more  efective  in  terms  
of  correcting  typing  errors.  Therefore,  Parkinson  users  perform  
fewer  keystrokes  for  the  same  task,  resulting  in  a  faster  typing  
speed.  

6.8  Top-K  Accuracy  
Top-K  accuracy  is  an  important  metric  to  measure  the  keyboard  
performance  since  auto-correction  algorithms  provide  a  list  of  can-
didate  words  from  the  user’s  touch  inputs.  Figure  8  shows  the  top-1  
to  top-5  error  rates  of  four  auto-correction  methods.  We  report  

the  results  of  four  methods,  BLM,  EM,  C-EPM,  and  D-EPM.  Re-
sults  show  that  all  methods  have  high  top-1  error  rates,  14.05%,  
12.86%,  13.81%  and  15.94%  respectively,  without  signifcant  difer-
ence  (F3,60  =  1.1,p  =  0.34).  However,  C-EPM  and  D-EPM  signif-
icantly  outperform  BLM  and  EM  between  top-2  and  top-5  error  
rates  (p  <  0.05  using  Turkey  post-hoc  analysis).  The  four  methods  
achieve  top-2  error  rates  at  6.47%,  5.91%,  4.19%  and  4.43%  respec-
tively  and  further  drop  to  4.83%,  5.76%,  1.07%  and  1.37%.  Therefore,  
both  C-EPM  and  D-EPM  are  efective  methods  to  predict  the  target  
word  when  top-5  candidate  words  are  provided.  

         
      

Figure 7: Top-k error rate comparison. Errors bars represent 
the standard errors of the mean. 

6.9  Time  interval  of  adjacent  touch  points  
We  measured  the  time  interval  between  adjacent  touchpoints  (TI),  
which  indicates  a  user’s  typing  speed  and  typing  confdence.  Results  
show  that  both  C-EPM  and  D-EPM  have  short  TI,  achieving  an  
average  time  of  577  ms  (s .d .  =  488)  and  612  ms  (s .d .  =  537).  BLM  
and  EM  achieve  687  ms  (s .d .  =  628)  and  715  ms  (s .d .  =  676)  TI  
respectively.  Auto-correction  method  has  a  signifcant  efect  on  
TI  (F3,60  =  12.2 2,    η =  0.38,  p  < .01).  Turkey  post-hoc  analysis  
indicates  that  C-EPM  yeilds  the  best  performance  with  respect  to  
other  methods  (p  < .01),  and  D-EPM  is  better  than  the  two  baseline  
methods  (p  < .01)  we  reviewed.  We  believe  that  the  efectiveness  
of  KDE  method  at  fltering  out  the  unintentional  repetitive  touches  
explains  why  D-EPM  has  a  longer  timer  interval  between  adjacent  
touchpoints  than  C-EPM.  Considering  both  the  KSPC  and  the  TI,  D-
EPM  enables  Parkinson  users  typing  quicker  with  fewer  keystrokes,  
which  explains  the  high  typing  speed.  

6.10  User  Experience  and  Feedback  
We  collected  participants’  subjective  ratings  of  diferent  auto-correction  
methods  using  a  7-point  Likert-scale  questionnaire.  The  metrics  we  
collected  included  perceived  accuracy,  perceived  speed,  perceived  
correction  performance,  self-confdence  and  overall  preference.  
Cronbach’s  reliability  α  for  the  questionnaire  was  0.95,  confrming  
the  internal  consistency  of  the  survey.  Figure  8(right)  shows  the  
score  of  each  metric.  Results  indicate  that  auto-correction  technique  
signifcantly  efects  perceived 2  accuracy  (χ (3)  =  18.8,  p  < .001),  



           

       
       

    

Figure 8: User feedback comparison among 4 auto-
correction techniques. Errors bars represent the standard 
errors of the mean. 
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perceived 2  speed  (χ (3)  =  17.2,  p  < .001),  perceived  correction  per-
formance ( 2 2  χ (3)  =  10.6,  p  < .05),  self-confdence  (χ (3)  =  49.9,  p  <  

2.001),  and  overall  preference  (χ (3)  =  21.9,  p  < .001).  Wilcoxon  
signed-rank  tests  show  that  both  C-EPM  and  D-EPM  outform  BLM  
and  EM  in  perceived  accuracy,  perceived  speed,  self-confdence,  and  
overall  preference  with  p  < .05.  However,  there  is  no  signifcant  
diference  between  C-EPM  and  BLM  (p  =  .08)  or  EM  (p  =  .10).  
D-EPM  outperforms  C-EPM  in  perceived  accuracy  (p  < .05),  per-
ceived  correction  performance  (p  < .05),  self-confdence  (p  < .001),  
and  overall  preference  (p  < .05).  There  is  no  signifcant  diference  
between  BLM  and  EM  methods  on  all  metrics.  

We  also  received  positive  feedback  from  users  when  they  expe-
rienced  the  D-EPM  method.  P1  mentioned  that  "I  think  I  did  better  
on  this  keyboard."  P2  mentioned  that  "I  am  sure  that  I  typed  faster  
on  this  keyboard.  I  would  love  to  use  it  in  the  future."  P4  mentioned  
that  "I  want  to  use  this  keyboard  on  my  phone  although  I  didn’t  
like  the  interface.  It  is  way  more  easier  to  use  than  the  keyboard  
on  my  Android  phone."  P5  mentioned  that  "I  thought  I  typed  more  
accurate.  I  gained  more  and  more  confdence  while  I  used  it.  I  didn’t  
need  to  correct  the  typos  since  it  will  show  me  what  I  wanted  to  
type  at  last."  P6  mentioned  that  "I  defnitely  typed  faster  on  this  
keyboard."  

7  DISCUSSION  AND  FUTURE  WORK  
This  paper  has  explored  the  feasibility  of  improving  Parkinson’s  
users’  text  entry  performance  on  smartphone  QWERTY  keyboards.  
We  not  only  analyzed  their  typing  behaviors  but  also  proposed  
algorithms  to  predict  their  input  with  various  kinds  of  typing  errors.  
We  discuss  the  results  and  design  implications  in  this  section.  

7.1  QWERTY  Input  for  Parkinson’s  Users  
Due  to  motor  impairment  symptoms,  users  with  Parkinson’s  dis-
ease  face  greater  challenges  during  touchscreen  text  entry  than  
others.  Existing  works  have  found  that  these  symptoms  limit  the  
usage  of  touchscreen  phones  among  elderly  people  [8,  23]  as  well  as  
that  text  entry  and  text  correction  [22]  were  the  most  challenging  
tasks.  However,  in  our  interviews,  we  found  that  Parkinson’s  users  
exhibited  a  strong  preference  the  QWERTY  keyboard  over  other  
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text  input  techniques  (e.g.,  T9  or  voice  input).  This  supports  our  mo-
tivation,  facilitating  Parkinson’s  users’  text  entry  on  smartphones  
with  a  QWERTY  keyboard.  

In  Study  1,  assuming  text  input  can  be  corrected  by  the  algo-
rithm,  experienced  Parkinson’s  users  could  type  19.8  WPM,  which  
is  more  comparable  to  non-Parkinson’s  users  (29.4  WPM)  than  in-
experienced  Parkinson’s  users  (4.73  WPM)  [23].  Also,  based  on  our  
touchpoint  distribution  results,  Parkinson’s  users’  systematic  ofset  
and  size  of  spread  were  only  about  20%  greater  than  non-Parkinson  
users,  which  was  relatively  small  compared  with  key  sizes  (6×9mm).  
This  makes  it  possible  to  correct  their  input  efectively.  

However,  users  with  Parkinson’s  disease  committed  more  in-
sertion,  omission,  and  substitution  errors  (see  Table  1)  than  other  
users,  a  major  challenge.  By  generalizing  the  classical  statistic  de-
coding  algorithm  and  modeling  the  spatial-temporal  features  of  
touch  errors,  our  method  achieved  22.8  WPM  with  8%  error  rate  
in  the  evaluation  study.  This  confrmed  that  achieving  fuent  text  
entry  experience  on  a  touchscreen  keyboard  for  Parkinson’s  users  
is  feasible.  

7.2  Efectiveness  of  EPM  
We  proposed  EPM,  which  generalized  the  classical  statistic  decoding  
algorithm,  to  correct  Parkinson’s  users  typing  errors.  The  advan-
tages  of  this  model  include:  1)  all  parameters  have  a  direct  physical  
interpretation  and  therefore  can  be  easily  summarized  based  on  
participants’  typing  data,  making  it  more  generalizable  to  diferent  
typing  scenarios  (e.g.,  touch-typing  on  tablets);  2)  the  calculated  
result  can  be  interpreted  as  a  probability,  making  it  compatible  with  
other  auxiliary  channels  (e.g.,  accelerometer  [5,  25]).  

In  Study  1,  users  with  Parkinson’s  disease  yielded  an  error  rate  of  
20.2%.  By  comparison,  in  study  2,  D-EPM  reduced  the  CER  to  22.4%,  
which  signifcantly  outperformed  the  classical  statistical  decoding  
algorithm  and  the  pattern  matching  technique.  

One  feature  of  D-EPM  is  the  dynamic  parameter  adjustment  
strategy,  which  leveraged  spatial-temporal  features  to  distinguish  
regular  and  unintentional  repetitive  touches.  To  quantitatively  eval-
uate  its  efect,  we  compared  C-EPM  and  D-EPM  in  the  evaluation  
study.  As  expected,  both  of  the  techniques  outperformed  the  two  
baseline  techniques  in  terms  of  input  speed,  accuracy,  and  user  
preference.  And  although  not  signifcant,  D-EPM  achieved  slightly  
better  typing  speed  and  error  rate  performance  than  C-EPM.  This  
confrmed  that  leveraging  spatial-temporal  features  is  worthwhile.  

7.3  Design  Implications  
Our  fndings  on  Parkinson’s  users’  typing  behavior  and  interviews  
on  their  preference  provided  a  number  of  design  implications  for  
accessible  keyboard  techniques.  

First,  Parkinson’s  users  preferred  to  use  the  QWERTY  keyboard  
rather  than  T9  keyboard,  mainly  due  to  their  experience  and  habit.  
Also,  they  usually  use  the  hand  with  less  severe  hand  tremor  to  
perform  one-hand  typing  on  the  keyboard,  while  the  other  hand  
holds  the  phone.  This  suggests  that  a  QWERTY  layout  with  a  bigger  
key  size  would  be  helpful,  rather  than  a  small-sized  keyboard  to  
facilitate  one-hand  typing.  

In  study  2,  D-EPM  efectively  corrected  the  participant’s  typing  
errors,  enabling  them  to  type  fuently.  Compared  with  BLM  and  EM,  
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the  results  highlighted  the  necessity  of  correcting  insertion  and  
substitution  errors  for  Parkinson’s  users.  During  interviews,  some  
participants  commented  that  although  the  algorithm  can  correct  
tolerant  their  input  errors,  they  would  welcome  some  more  designs  
in  typing  feedback,  e.g.,  large  word  font.  

The  top-k  result  in  study  2  indicates  that  D-EPM  can  achieve  
good  performance  to  predict  the  correct  word  at  a  low  error  rate  
after  top-3.  So  we  would  recommend  a  future  design  to  provide  at  
least  4  top-ranked  candidate  words  to  the  users.  

7.4  Limitations  and  Future  Work  
We  acknowledge  that  we  compared  to  young  adults  rather  than  
non-Parkinson’s  elders  in  section  4.  Age  diference  has  strongly  
correlates  with  typing  performance  [23].  The  reason  is  that  we  
supplemented  the  control  group  last  to  explore  the  unique  touch  
behavior  of  Parkinson’s  users.  By  then,  recruiting  elderly  users  
during  the  Covid-19  pandemic  became  very  challenging.  We  re-
cruited  young  adults  in  lieu  of  non-Parkinson’s  elders,  which  was  
a  sub-optimal  solution.  However,  this  does  not  afect  our  major  
results  on  modelling  Parkinson’s  users’  typing  behavior.  

In  future  work,  a  larger  user  group  could  be  recruited  to  further  
prove  the  idea  that  in  particular  contexts,  a  combination  of  general  
possibility  models,  e.g.,  EPM,  and  context-oriented  models,  could  
have  better  performances  than  pure  general  possibility  techniques.  
Second,  a  dataset  could  be  established  for  future  text  entry  research  
concerning  Parkinson’s  patients’  specifc  demographic.  In  the  fu-
ture,  we  would  like  to  investigate  gesture  typing  for  Parkinson’s  
users  [17].  Finally,  we  would  like  to  investigate  the  performance  of  
EPM  on  a  broader  group  of  users  so  we  can  evaluate  our  method’s  
generalization  ability.  

8  CONCLUSION  
In  this  paper,  we  proposed  a  smartphone  QWERTY  keyboard  for  
users  with  Parkinson’s  disease  based  on  the  elastic  probabilistic  
model.  We  frst  investigated  Parkinson’s  users’  typing  behavior  on  
smartphones.  In  particular,  we  identifed  and  compared  the  typing  
characteristics  generated  by  users  with  and  without  Parkinson’s  
disease.  We  found  that  user  with  Parkinson’s  disease  generated  
many  more  insertion,  omission  and  substitution  errors  than  young  
adults.  We  then  proposed  an  elastic  probabilistic  model  with  a  dy-
namic  parameter  adjustment  feature  (D-EPM)  for  input  prediction.  
By  incorporating  both  spatial  and  temporal  features,  D-EPM  gener-
alized  the  classical  statistical  decoding  algorithm  to  correct  various  
of  typing  errors,  while  maintaining  direct  physical  interpretabil-
ity.  Our  evaluation  user  study  results  confrmed  that  the  proposed  
algorithm  outperformed  baseline  techniques:  users  reached  22.8  
WPM  typing  speed  with  a  signifcantly  lower  error  rate  (8.0%)  and  
better  user  experience  and  feedback  than  baseline  techniques.  We  
concluded  that  our  technique  could  efectively  facilitate  Parkinson’s  
users’  text  entry  experience  on  smartphones.  

ACKNOWLEDGMENTS  
This  work  is  supported  by  the  National  Key  R&D  Program  of  China  
under  Grant  No.  2019YFF0303300,  the  Natural  Science  Foundation  
of  China  under  Grant  No.  62002198,  No.  61902208,  the  grant  from  
the  Institute  for  Guo  Qiang,  Tsinghua  University  No.  2019GOG0003,
and  the  China  Postdoctoral  Science  Foundation  under  Grant  No.  

2019M660647.  Our  work  is  also  supported  by  the  Beijing  Key  Lab  
of  Networked  Multimedia,  Undergraduate  /  Graduate  Education  
Innovation  Grants,  Tsinghua  University.  We  would  like  to  thank  
all  participants  for  their  time,  efort.  

REFERENCES 
[1] 2016. American National Corpus. http://www.anc.org/. 
[2] Shiri Azenkot and Shumin Zhai. 2012. Touch behavior with diferent postures on 

soft smartphone keyboards. MobileHCI’12 - Proceedings of the 14th International 
Conference on Human Computer Interaction with Mobile Devices and Services 
(2012), 251–260. https://doi.org/10.1145/2371574.2371612 

[3] Mohammed Belatar and Franck Poirier. 2008. Text Entry for Mobile Devices and 
Users with Severe Motor Impairments: Handiglyph, a Primitive Shapes Based 
Onscreen Keyboard. In Proceedings of the 10th International ACM SIGACCESS Con-
ference on Computers and Accessibility (Assets ’08). Association for Computing Ma-
chinery, New York, NY, USA, 209–216. https://doi.org/10.1145/1414471.1414510 

[4] Leah Findlater and Jacob O. Wobbrock. 2012. Personalized input: Improving 
ten-fnger touchscreen typing through automatic adaptation. In Conference on 
Human Factors in Computing Systems - Proceedings. 815–824. https://doi.org/10. 
1145/2207676.2208520 

[5] Mayank Goel, Leah Findlater, and Jacob Wobbrock. 2012. WalkType: Using 
Accelerometer Data to Accomodate Situational Impairments in Mobile Touch 
Screen Text Entry. In Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems (Austin, Texas, USA) (CHI ’12). Association for Computing 
Machinery, New York, NY, USA, 2687–2696. https://doi.org/10.1145/2207676. 
2208662 

[6] Mayank Goel, Alex Jansen, Travis Mandel, Shwetak N. Patel, and Jacob O. Wob-
brock. 2013. ContextType: Using Hand Posture Information to Improve Mobile 
Touch Screen Text Entry. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (Paris, France) (CHI ’13). Association for Computing 
Machinery, New York, NY, USA, 2795–2798. https://doi.org/10.1145/2470654. 
2481386 

[7] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-
guage Modeling for Soft Keyboards. In Proceedings of the 7th International 
Conference on Intelligent User Interfaces (San Francisco, California, USA) (IUI 
’02). Association for Computing Machinery, New York, NY, USA, 194–195. 
https://doi.org/10.1145/502716.502753 

[8] Toshiyuki Hagiya, Toshiharu Horiuchi, and Tomonori Yazaki. 2016. Typing tutor: 
Individualized tutoring in text entry for older adults based on input stumble 
detection. Conference on Human Factors in Computing Systems - Proceedings 
(2016), 733–744. https://doi.org/10.1145/2858036.2858455 

[9] Toshiyuki Hagiya, Toshiharu Horiuchi, Tomonori Yazaki, Tsuneo Kato, and 
Tatsuya Kawahara. 2017. Assistive typing application for older adults based 
on input stumble detection. Journal of Information Processing 25, June (2017), 
417–425. https://doi.org/10.2197/ipsjjip.25.417 

[10] Christian Holz and Patrick Baudisch. 2011. Understanding Touch. In Proceedings 
of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver, 
BC, Canada) (CHI ’11). Association for Computing Machinery, New York, NY, 
USA, 2501–2510. https://doi.org/10.1145/1978942.1979308 

[11] Farzana Jabeen, Linmi Tao, Lin Tong, and Shanshan Mei. 2019. Modeling Chinese 
Input Interaction for Patients with Cloud Based Learning. (2019), 1–8. https: 
//doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00206 

[12] Shaun K. Kane, Jacob O. Wobbrock, Mark Harniss, and Kurt L. Johnson. 2008. 
TrueKeys: Identifying and correcting typing errors for people with motor impair-
ments. In International Conference on Intelligent User Interfaces, Proceedings IUI. 
349–352. https://doi.org/10.1145/1378773.1378827 

[13] Masatomo Kobayashi, Atsushi Hiyama, Takahiro Miura, Chieko Asakawa, Mi-
chitaka Hirose, and Tohru Ifukube. 2011. Elderly User Evaluation of Mobile 
Touchscreen Interactions. In Human-Computer Interaction – INTERACT 2011, Pe-
dro Campos, Nicholas Graham, Joaquim Jorge, Nuno Nunes, Philippe Palanque, 
and Marco Winckler (Eds.). Springer Berlin Heidelberg, 83–99. 

[14] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK 2: a large vocabulary 
shorthand writing system for pen-based computers. In Proc. UIST’04. ACM, 43– 
52. 

[15] Per Ola Kristensson and Shumin Zhai. 2005. Relaxing stylus typing precision by 
geometric pattern matching. International Conference on Intelligent User Interfaces, 
Proceedings IUI (2005), 151–158. https://doi.org/10.1145/1040830.1040867 

[16] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, 
insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710. 

[17] Yu Hao Lin, Suwen Zhu, Yu Jung Ko, Wenzhe Cui, and Xiaojun Bi. 2018. Why 
is gesture typing promising for older adults? comparing gesture and tap typing 
behavior of older with young adults. In ASSETS 2018 - Proceedings of the 20th 
International ACM SIGACCESS Conference on Computers and Accessibility. 271– 
281. https://doi.org/10.1145/3234695.3236350 

[18] I. Scott MacKenzie. 2015. https://www.yorku.ca/mack/RN-TextEntrySpeed.html 

http://www.anc.org/
https://doi.org/10.1145/2371574.2371612
https://doi.org/10.1145/1414471.1414510
https://doi.org/10.1145/2207676.2208520
https://doi.org/10.1145/2207676.2208520
https://doi.org/10.1145/2207676.2208662
https://doi.org/10.1145/2207676.2208662
https://doi.org/10.1145/2470654.2481386
https://doi.org/10.1145/2470654.2481386
https://doi.org/10.1145/502716.502753
https://doi.org/10.1145/2858036.2858455
https://doi.org/10.2197/ipsjjip.25.417
https://doi.org/10.1145/1978942.1979308
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00206
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00206
https://doi.org/10.1145/1378773.1378827
https://doi.org/10.1145/1040830.1040867
https://doi.org/10.1145/3234695.3236350
https://www.yorku.ca/mack/RN-TextEntrySpeed.html


           CHI ’21, May 8–13, 2021, Yokohama, Japan 

[19]  I.  Scott  MacKenzie  and  R.  William  Soukoref.  2003.  Phrase  sets  for  evaluating  [34]  Shari  Trewin.  2003.  Automating  Accessibility:  The  Dynamic  Keyboard.  SIGAC-
text  entry  techniques.  In  Conference  on  Human  Factors  in  Computing  Systems  - CESS  Access.  Comput.  77–78  (2003),  71–78.  https://doi.org/10.1145/1029014.  
Proceedings  (CHI  EA  ’03).  Association  for  Computing  Machinery,  New  York,  NY,  1028644  
USA,  754–755.  https://doi.org/10.1145/765891.765971  [35]  Shari  Trewin,  Cal  Swart,  and  Donna  Pettick.  2013.  Physical  Accessibility  of  Touch-

[20]  Kyle  Montague,  Hugo  Nicolau,  and  Vicki  L  Hanson.  2014.  Motor-Impaired  screen  Smartphones.  In  Proceedings  of  the  15th  International  ACM  SIGACCESS  
Touchscreen  Interactions  in  the  Wild.  In  Proceedings  of  the  16th  International  ACM  Conference  on  Computers  and  Accessibility  (ASSETS  ’13).  Association  for  Comput-
SIGACCESS  Conference  on  Computers  &  Accessibility  (ASSETS  ’14).  Association  ing  Machinery,  New  York,  NY,  USA.  https://doi.org/10.1145/2513383.2513446  
for  Computing  Machinery,  New  York,  NY,  USA,  123–130.  https://doi.org/10.  [36]  Radu-Daniel  Vatavu  and  Ovidiu-Ciprian  Ungurean.  2019.  Stroke-Gesture  Input  
1145/2661334.2661362  for  People  with  Motor  Impairments:  Empirical  Results  &  Research  Roadmap.  In  

[21]  Lilian  Genaro  Motti,  Nadine  Vigouroux,  and  Philippe  Gorce.  2013.  Interaction  Proceedings  of  the  2019  CHI  Conference  on  Human  Factors  in  Computing  Systems  
techniques  for  older  adults  using  touchscreen  devices:  A  literature  review.  IHM  (CHI  ’19).  Association  for  Computing  Machinery,  New  York,  NY,  USA,  1–14.  
2013  - Actes  de  la  25ieme  Conference  Francophone  sur  l’Interaction  Homme-Machine https://doi.org/10.1145/3290605.3300445  
(2013),  125–134.  https://doi.org/10.1145/2534903.2534920  [37]  Keith  Vertanen,  Haythem  Memmi,  Justin  Emge,  Shyam  Reyal,  and  Per  Ola  Kris-

[22]  Maia  Naftali  and  Leah  Findlater.  2014.  Accessibility  in  Context:  Understanding  tensson.  2015.  VelociTap:  Investigating  Fast  Mobile  Text  Entry  Using  Sentence-
the  Truly  Mobile  Experience  of  Smartphone  Users  with  Motor  Impairments.  In  Based  Decoding  of  Touchscreen  Keyboard  Input.  In  Proceedings  of  the  33rd  Annual  
Proceedings  of  the  16th  International  ACM  SIGACCESS  Conference  on  Computers  ACM  Conference  on  Human  Factors  in  Computing  Systems  (Seoul,  Republic  of  
&  Accessibility  (ASSETS  ’14).  Association  for  Computing  Machinery,  New  York,  Korea)  (CHI  ’15).  Association  for  Computing  Machinery,  New  York,  NY,  USA,  
NY,  USA,  209–216.  https://doi.org/10.1145/2661334.2661372  659–668.  https://doi.org/10.1145/2702123.2702135  

[23]  Hugo  Nicolau  and  Joaquim  Jorge.  2012.  Elderly  text-entry  performance  on  touch- [38]  Chat  Wacharamanotham,  Jan  Hurtmanns,  Alexander  Mertens,  Martin  Kro-
screens.  In  ASSETS’12  - Proceedings  of  the  14th  International  ACM  SIGACCESS  nenbuerger,  Christopher  Schlick,  and  Jan  Borchers.  2011.  Evaluating  Swab-
Conference  on  Computers  and  Accessibility.  127–134.  https://doi.org/10.1145/  bing:  A  Touchscreen  Input  Method  for  Elderly  Users  with  Tremor.  In  Pro-
2384916.2384939  ceedings  of  the  SIGCHI  Conference  on  Human  Factors  in  Computing  Systems  

[24]  Francisco  Nunes,  Paula  Alexandra  Silva,  João  Cevada,  Ana  Correia  Barros,  and  (CHI  ’11).  Association  for  Computing  Machinery,  New  York,  NY,  USA,  623–626.  
Luís  Teixeira.  2016.  User  interface  design  guidelines  for  smartphone  applications  https://doi.org/10.1145/1978942.1979031  
for  people  with  Parkinson’s  disease.  Universal  Access  in  the  Information  Society  [39]  Yuntao  Wang,  Chun  Yu,  Jie  Liu,  and  Yuanchun  Shi.  2013.  Understanding  Per-
15,  4  (2016),  659–679.  https://doi.org/10.1007/s10209-015-0440-1  formance  of  Eyes-Free,  Absolute  Position  Control  on  Touchable  Mobile  Phones.  

[25]  Katrin  Plaumann,  Milos  Babic,  Tobias  Drey,  Witali  Hepting,  Daniel  Stooss,  and  In  Proceedings  of  the  15th  International  Conference  on  Human-Computer  Inter-
Enrico  Rukzio.  2018.  Improving  Input  Accuracy  on  Smartphones  for  Persons  action  with  Mobile  Devices  and  Services  (Munich,  Germany)  (MobileHCI  ’13).  
who  are  Afected  by  Tremor  using  Motion  Sensors.  Proceedings  of  the  ACM  Association  for  Computing  Machinery,  New  York,  NY,  USA,  79–88.  https:  
on  Interactive,  Mobile,  Wearable  and  Ubiquitous  Technologies  1,  4  (2018),  1–30.  //doi.org/10.1145/2493190.2493215  
https://doi.org/10.1145/3161169  [40]  Daryl  Weir,  Henning  Pohl,  Simon  Rogers,  Keith  Vertanen,  and  Per  Ola  Kristensson.  

[26]  Ondrej  Polacek,  Adam  J  Sporka,  and  Pavel  Slavik.  2017.  Text  input  for  motor- 2014.  Uncertain  text  entry  on  mobile  devices.  In  Conference  on  Human  Factors  in  
impaired  people.  Universal  Access  in  the  Information  Society  16,  1  (2017),  51–72.  Computing  Systems  - Proceedings.  2307–2316.  https://doi.org/10.1145/2556288.  
https://doi.org/10.1007/s10209-015-0433-0  2557412  

[27]  Élvio  Rodrigues,  Micael  Carreira,  and  Daniel  Gonçalves.  2014.  Improving  text- [41]  Daryl  Weir,  Simon  Rogers,  Roderick  Murray-Smith,  and  Markus  Löchtefeld.  2012.  
entry                       experience  for  older  adults  on  tablets.  Lecture  Notes  in  Computer  Science  A user-specifc Machine Learning approach for improving touch accuracy on
(including subseries Lecture Notes in Artifcial Intelligence and Lecture Notes in mobile  devices.  In  UIST’12  - Proceedings  of  the  25th  Annual                              ACM Symposium on
Bioinformatics)                 8515  LNCS,  PART  3  (2014),  167–178.  https://doi.org/10.1007/978- User Interface Software and Technology. 465–475. https://doi.org/10.1145/2380116.
3-319-07446-7_17     2380175

[28] Élvio                         Rodrigues,  Micael  Carreira,  and  Daniel  Gonçalves.  2016.  Enhancing  typing  [42] Wikipedia contributors. 2020. Parkinson’s disease — Wikipedia, The Free Ency-
performance       of  older  adults  on  tablets.  Universal  Access  in  the  Information  Society  clopedia. https://en.wikipedia.org/w/index.php?title=Parkinson%27s_disease&
15,  3           (2016),  393–418.  https://doi.org/10.1007/s10209-014-0394-8  oldid=970177846 [Online; accessed 31-July-2020].

[29] Sayan Sarcar, Jussi Jokinen, Antti Oulasvirta, Xiangshi Ren, Chaklam Silpa- [43]  Jacob  O  Wobbrock,  Brad                                        A Myers, and John A Kembel. 2003. EdgeWrite: A
suwanchai,  and  Zhenxin  Wang.  2017.  Ability-Based  Optimization:  Designing  Stylus-Based  Text  Entry  Method  Designed  for  High  Accuracy  and  Stability  of  
Smartphone Text Entry Interface for Older Adults, Regina Bernhaupt, Girish Motion.  In  Proceedings  of  the  16th  Annual  ACM  Symposium  on  User  Interface                      
Dalvi, Anirudha Joshi, Devanuj K.                               Balkrishan,  Jacki  O’Neill,  and  Marco  Winckler  Software and Technology (UIST ’03). Association for Computing Machinery, New
(Eds.).  Springer  International  Publishing,  Cham,  326–331.  York,  NY,  USA,  61–70.  https://doi.org/10.1145/964696.964703  

[30] S Sarcar, J                                       P  P  Jokinen,  A  Oulasvirta,  Z  Wang,  C  Silpasuwanchai,  and  X  Ren.  [44] Xin Yi, Chun Yu, Weinan Shi, and Yuanchun Shi. 2017. Is it too small?: Investi-
2018.  Ability-Based  Optimization  of  Touchscreen                           Interactions.  IEEE  Pervasive  gating the performances and preferences of users when typing on tiny QWERTY
Computing 17, 1 (2018), 15–26.                               https://doi.org/10.1109/MPRV.2018.011591058  keyboards. International Journal of Human Computer Studies 106, April (2017),

[31]  Weinan  Shi,  Chun  Yu, Shuyi Fan, Feng Wang, Tong Wang, Xin                     Yi,  Xiaojun  44–62. https://doi.org/10.1016/j.ijhcs.2017.05.001
Bi, and Yuanchun Shi. 2019. Vipboard: Improving                                     screen-reader  keyboard  for  [45] Shumin Zhai and Per Ola Kristensson. 2012. The word-gesture keyboard:
visually impaired                         people  with  character-level  auto  correction.  In  Conference  on  Reimagining keyboard interaction. Commun. ACM 55, 9 (2012), 91–101. https:
Human  Factors  in  Computing  Systems  - Proceedings. 1–12. https://doi.org/10.         //doi.org/10.1145/2330667.2330689
1145/3290605.3300747 [46]  Shumin  Zhai  and  Per  Ola  Kristensson.  2012.  The    word-gesture  keyboard:  reimag-

[32]                     Weinan  Shi,  Chun  Yu,  Xin  Yi,  Zhen  Li,  and  Yuanchun  Shi.  2018.  TOAST:  Ten- ining keyboard interaction. Commun. ACM 55, 9 (2012), 91–101.
Finger Eyes-Free Typing on Touchable Surfaces. Proceedings of the ACM on [47]  Yu  Zhong,  Astrid  Weber,  Casey  Burkhardt,  Phil  Weaver,  and  Jefrey  P.  Bigham.                        
Interactive,  Mobile,  Wearable and Ubiquitous Technologies 2, 1                                   (2018),  1–23.  https:  2015. Enhancing android accessibility for users with hand tremor by reducing
//doi.org/10.1145/3191765 fne  pointing  and  steady  tapping.  In  W4A  2015  - 12th  Web  for  All  Conference.  1–10.    

[33]  R.  William  Soukoref  and  I.  Scott  MacKenzie.  2003.     Metrics  for  text  entry  research:  https://doi.org/10.1145/2745555.2747277
An                               evaluation  of  MSD  and  KSPC,  and  a  new  unifed  error  metric.  In  Conference  [48] Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin Zhai. 2018. Typing on an
on Human Factors in Computing Systems - Proceedings. 113–120. invisible  keyboard.  In  Conference  on  Human  Factors  in  Computing                    Systems -

Proceedings  (CHI  ’18,  Vol.  2018-April).  Association  for  Computing  Machinery,  New  
York,  NY,  USA,  1–13.  https://doi.org/10.1145/3173574.3174013  

Yuntao Wang, et al. 

https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/2661334.2661362
https://doi.org/10.1145/2661334.2661362
https://doi.org/10.1145/2534903.2534920
https://doi.org/10.1145/2661334.2661372
https://doi.org/10.1145/2384916.2384939
https://doi.org/10.1145/2384916.2384939
https://doi.org/10.1007/s10209-015-0440-1
https://doi.org/10.1145/3161169
https://doi.org/10.1007/s10209-015-0433-0
https://doi.org/10.1007/978-3-319-07446-7_17
https://doi.org/10.1007/978-3-319-07446-7_17
https://doi.org/10.1007/s10209-014-0394-8
https://doi.org/10.1109/MPRV.2018.011591058
https://doi.org/10.1145/3290605.3300747
https://doi.org/10.1145/3290605.3300747
https://doi.org/10.1145/3191765
https://doi.org/10.1145/3191765
https://doi.org/10.1145/1029014.1028644
https://doi.org/10.1145/1029014.1028644
https://doi.org/10.1145/2513383.2513446
https://doi.org/10.1145/3290605.3300445
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/1978942.1979031
https://doi.org/10.1145/2493190.2493215
https://doi.org/10.1145/2493190.2493215
https://doi.org/10.1145/2556288.2557412
https://doi.org/10.1145/2556288.2557412
https://doi.org/10.1145/2380116.2380175
https://doi.org/10.1145/2380116.2380175
https://en.wikipedia.org/w/index.php?title=Parkinson%27s_disease&oldid=970177846
https://en.wikipedia.org/w/index.php?title=Parkinson%27s_disease&oldid=970177846
https://doi.org/10.1145/964696.964703
https://doi.org/10.1016/j.ijhcs.2017.05.001
https://doi.org/10.1145/2330667.2330689
https://doi.org/10.1145/2330667.2330689
https://doi.org/10.1145/2745555.2747277
https://doi.org/10.1145/3173574.3174013

	Abstract
	1 Introduction
	2 Related Work
	2.1 Effect of the Parkinson's Symptoms
	2.2 Text Entry Methods for Parkinson's Users
	2.3 Classical Statistical Decoding Algorithm
	2.4 Correcting Insertion and Omission Errors

	3 Text Entry of Parkinson's Users in Daily Lives
	3.1 Results

	4 Modeling the Typing Behavior
	4.1 Participants
	4.2 Apparatus and Platform
	4.3 Experiment Design and Procedure
	4.4 Results

	5 Elastic Probabilistic Model
	5.1 Problem Definition
	5.2 Algorithm Deduction
	5.3 Dynamic Parameter Adjustment

	6 User Evaluation Study
	6.1 Participants
	6.2 Experiment Design
	6.3 Procedure
	6.4 Typing Speed
	6.5 Character Error Rate
	6.6 Word-Level Error Rate
	6.7 KSPC
	6.8 Top-K Accuracy
	6.9 Time interval of adjacent touch points
	6.10 User Experience and Feedback

	7 Discussion and Future Work
	7.1 QWERTY Input for Parkinson's Users
	7.2 Effectiveness of EPM
	7.3 Design Implications
	7.4 Limitations and Future Work

	8 Conclusion
	Acknowledgments
	References



