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ABSTRACT

Serious brain injuries, spinal injuries, and motor neuron
diseases often lead to severe paralysis. Individuals with
such disabilities can benefit from interaction techniques that
enable them to interact with the devices and thereby the
world around them. While a number of systems have
proposed tongue-based gesture detection systems, most of
these systems require intrusive instrumentation of the user’s
body (e.g., tongue piercing, dental retainers, multiple
electrodes on chin). In this paper, we propose a wireless,
non-intrusive and non-contact facial gesture detection
system using X-band Doppler. The system can accurately
differentiate between 8 different facial gestures through
non-contact sensing, with an average accuracy of 94.3%.
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INTRODUCTION

Motor neuron diseases such as Amyotrophic Lateral
Sclerosis (ALS), as well as serious brain or spine injuries,
often cause severe paralysis. Many of these individuals
retain strong cognitive abilities, and half of them are
between the ages of 16 and 30 years [1]. The debilitating
effects of these injuries and diseases impede an otherwise
able person from fully participating and engaging with
certain aspects of their environment, such as computing
technologies. Therefore, there is great value in empowering
these individuals by helping them communicate with and
control their environments.

Many brain injuries, spinal injuries, and motor neuron
diseases that lead to paraplegia, do not however affect the
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cranial nerves [3]. These nerves control various facial
organs such as eyes, jaws, tongue, and cheeks. While the
eyes and tongue have been used extensively by researchers
for building accessible interaction systems [1,2,3,4,7],
many other facial organs also offer advantages for robust
and non-intrusive gestural interaction. For example, due to
their utility in chewing and vocalization, jaws offer low
perceived exertion and, unlike the eye, produce no
interference with the user’s visual activity. Moreover, most
of the tongue-based gesture recognition approaches require
varied levels of on-body instrumentation; including
magnetic piercings in the tongue [1], dental retainers [3],
and an array of eight SEMG sensors attached on the user’s
face and chin [4,7]. The more invasive technologies, such
as the tongue piercing, offer very fine-grained tracking of
the user’s tongue [1] and can be used for many advanced
applications such as controlling wheelchairs or handwriting
recognition. However, in cases where the user needs
simpler input and does not require fine-grained tracking of
tongue, sensing can be significantly less intrusive.
Moreover, in many cases, these individuals can still use
other parts of their body controlled by the cranial nerves,
such as their jaws and cheeks [5]. A system that could non-
intrusively track movement of all these body parts can
provide additional flexibility for users. The users can then
easily switch between the different ways of gesture input
depending on their preferences and exertion over time.
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Figure 1. (Left) Tongue-in-Cheek is a non-contact facial gesture
detection system. It is integrated into a pair of off-the-shelf
headphones. (Right) The motion sensor module and Azimuth
(bottom-left) and elevation (bottom-right) of the antenna beam
pattern.

In this paper, we present Tongue-in-Cheek (Figure 1), a
system that uses 10 GHz wireless signals to detect different
facial gestures in four directions. It detects the movement of
cheeks caused by moving different parts of the mouth:
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touching of tongue against the inside of the cheeks, puffing
the cheeks, and moving the jaws. Tongue-in-Cheek places
three small, inexpensive 10 GHz Doppler radar units
around a user’s face (Figure 1) and measures the Doppler
shifts caused by fine movements of the cheeks. Unlike
earlier systems, these sensors do not need to be in contact of
the user’s skin and require no intricate calibration or
placement. Tongue-in-Cheek easily integrates with existing
headphones and treats motions from the tongue, cheeks, and
jaws as the same so that the user can seamlessly switch
between these three body parts. This feature also makes the
system adaptable to individuals with different variations of
paralysis. For example, the system used by an individual
with facial paralysis can seamlessly be used by another
individual with tongue paralysis.

We evaluated our system design and gesture set with 3
individuals with facial paralysis and 2 of the 3 participants
felt Tongue-in-Cheek was perfect suited to their needs. The
accuracy of Tongue-in-Cheek was evaluated in a controlled
study of 8 participants. The system was tested for eight
different gestures performed through three methods:
tongue movement, cheek puffing, and jaw movement. Our
findings show that Tongue-in-Cheek differentiates between
different gestures in four directions: up, down, left, and
right, with an average accuracy of 94.3%. The system
requires minimal calibration from the user. It simply checks
whether the user has worn the headset properly by asking
them to perform one gesture in each of the four directions.
On an average, participants took 10.2 seconds to adjust the
headset. This adjustment is not significantly different than
adjusting one’s headphones. Lastly, we also tested the
effectiveness of Tongue-in-Cheek for text entry using
EdgeWrite [6] and for playing video games.

DESIGN OF TONGUE-IN-CHEEK

The Tongue-in-Cheek prototype consists of three small
microwave motion sensor modules. These sensors are
attached to a pair of off-the-shelf headphones such that that
each sensor covers one of the three sides: leff, right, and
bottom (Figure 1, Left). The outputs of the sensors are
connected to a National Instruments USB-6009 data
acquisition unit (DAQ). The unit takes voltage samples at
48 kS/s and digitizes them with 14-bit resolution. The
system samples each of the three sensors at 16 kS/s. The
output of the DAQ was connected to a computer through
USB, where it was processed in MATLAB.

Motion Sensors
The microwave motion sensor modules used in this
prototype are X-band bistatic Doppler transceiver modules
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(Parallax 32213). The module’s built-in dielectric resonator
oscillator uses a pair of transmitting patch antennas (Figure
1, Right) to transmit a 10.5 GHz waveform with a peak
power of 5 mW. Another pair of antenna receives the
microwave energy reflected by the objects in front of the
module. If the object moves, the received frequency is
shifted away from the transmit frequency of 10.5 GHz due
to the Doppler effect. This frequency-shifted received
signal is mixed with the transmitted signal to obtain a low-
frequency voltage representing the amount of frequency
shift.

Apart from being inexpensive ($4 USD) and -easily
available, these sensors offer some unique advantages for
our purposes. Considering that they operate in the
microwave region, the sensing is immune to the effects of
temperature (within normal bounds of temperature
variation), acoustic noise, light, efc. Their low output power
also prevents any harm to the human body. These modules
are not FCC approved but comply with FCC Part 15 Rules
and Regulations. Additionally, our system requires sensors
that can be placed in close proximity of the face and can
detect subtle facial movements The antennas on these
modules are highly directional and have almost uniform
beam patterns from ~60° to 60°. If the sensors are placed in
close proximity of the face, the 60°conical radiation pattern
of the antenna in front of the sensors covers the majority of
user’s cheeks and chins. The system also needs to ensure
that the modules do not ‘jam” each other as they are
running at same frequency. It presents a simple Ul to guide
the user to adjust the modules such that they are close to the
user’s cheeks and their face occludes the opposing modules
in such a way that the side lobes of the modules do not
interfere with one another.

Gestures

Tongue-in-Cheek supports gestures in four directions: leff,
right, up, and down and two modes: tap and hold. In case of
tap gestures, the user moves the body part with which they
want to perform the gesture and then retract to the rest
position. For hold gestures, the user “holds” the gesture
instead of retracting back to the resting position after a tap.
All the (both tap and hold) gestures can be performed either
by touching the tongue against the inner side of the cheeks
or moving the lower jaw, or puffing the cheeks. In case of
puffing of cheeks, the up and down gestures require the user
to puff the upper lip and lower lip portion, respectively. All
these gestures result in a, sometimes subtle, motion of
cheeks.

We aimed to make our device flexible so that the user could
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Figure 2. (A-E) Output signal from the each of three microwave Doppler sensors for no-gesture, 4-directional tap gesture. (F) hold-down
gesture. The highlighted part in E and F shows the difference between a tap and a hold gesture.
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switch between different interaction modes. This was
motivated by two observations: (1) cranial muscles are not
trained for gestures and have a tendency to get tired after
prolonged use, and (2) different individuals have different
conditions. For example, in our evaluation one participant
could not use their tongue for interaction but could easily
puff the cheeks. This goal was aided by our choice of
sensing approach. The motion sensors used in our prototype
sense the direction of the motion. The system is only aware
of the direction in which the gesture was performed and not
the way the user performed it. This method helps the user to
seamlessly switch between the gesture modes without the
need to retrain or reconfigure the system. We carefully
selected our gesture set to make sure that they are simple
and modular. The gestures can be performed in all four
directions and the differentiation of fap and hold means that
the gestures can be combined to perform more complicated
interactions. The video figure shows one such example for
cursor control. The modularity of the gestures helps in
overcoming the limitation of discrete gesture detection.

The placement of three sensors around the face enables a
simple detection of motion in three directions: left, right,
and down. A gesture in one direction changes the signal in
the corresponding sensor significantly more than the rest.
We do not have a sensor in the “up” direction, which adds
some complexity. Ideally, the upward motion of the skin
would generate a reverse Doppler shift detected by the
bottom sensor. However, this simple model does not
accommodate the complexity of facial muscle structure;
when a user touches their upper lips with their tongue, the
entire area around the mouth moves, and all three sensors
experience deviations in their low-frequency components.
The bottom sensor experiences the most deviation, but not
necessarily in the opposite direction as in the case of the
“down” gesture (Figure2). In the both the “up” and
“down” gestures, the skin moves out (i.e.,, away from the
user’s body) more than it moves up. However, our
empirical experiments show that the signal is different for
each of the four gestures and can be separately classified
using standard machine learning techniques.

Figure 2F shows an example of the observed low frequency
signal for a /hold-up gesture. This signal for bottom sensor
is very different from the tap-up gesture shown in Figure
2E. In case of hold, the magnitude does not oscillate
because the muscles do not retract to resting position
immediately.
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Figure 3. Tongue-in-Cheek’s algorithm

Algorithm

The output of the microwave motion sensors is a baseband
signal representing the amplitude of the Doppler shift. An
analog to digital converter (ADC) first digitizes the output
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from the motion sensors. Then a third order Butterworth
Filter low-pass filters the data up to 15 Hz (Figure 3). After
this we use two different processing pipelines to differentiate
between tap and hold, and the four directions. The outputs
from both the classifiers are combined in the end to form
eight different gestures: tap-left, tap-right, tap-up, tap-down,
hold-left, hold-right, hold-up, and hold-down.

Tap vs. Hold Classification

Figure 2 shows that the signal looks substantially different
for the tap and hold gestures. We use a support vector
machine (SVM) classifier here and the features are calculated
across 1 sec windows with a 0.8 sec overlap. The overlap of
0.8 sec assumes that the user would not perform two gestures
within 0.2 sec. We first use mean filtering to downsample the
low-pass filtered signal into 20 samples. These 20 data points
from each of the three sensors gives us a total of 60 features
for the SVM-based model. This particular processing
pipeline does not do any segmentation. It simply calculates
features across window. The second processing pipeline that
classifies the gesture into one of the four directions performs
the segmentation.

Direction Classification

Figure 3 shows that while differentiation between left, right,
and down is very clear, the case of down vs. up is not that
straightforward. Therefore, we cannot use a rule-based
system and use decision trees to classify between the four
directions, instead. We also added a class to represent when
no gestures is being performed. This helped us in robust
segmentation of real-time data. We calculate 3 features for
each gesture: minimum, maximum, and variance of each
1 second window. The variance is the most important feature
in this classifier because it is clear from Figure 3 that the
amount of change in signal is a big differentiating factor. The
minimum and maximum features help in overcoming the
noise in the data and provide dynamic thresholding to the
decision trees. All the features are calculated over 1 second
window with a 0.8 seconds overlap.

QUALITATIVE EVALUATION

We evaluated our choice of sensing mechanism and gesture-
set by demonstrating Tongue-in-cheek to three individuals
with neuromuscular conditions. Two of the participants tried
the system for almost 10 minutes each, and commented on
the performance and the design. The third participant could
not use the system personally and commented on the overall
design and utility. P1 could not open his jaw far enough to
instrument the inside of the mouth easily. Another side effect
of his condition was tongue fasciculation — minor but
constant involuntary muscle fluctuations across the tongue.
These fluctuations were large enough to make tongue
tracking hard, but the cheeks were relatively stable.
Therefore, Tongue-in-Cheek was a relatively better approach
for him as compared to [1,3]. P2 preferred switching between
different modes and said, “the fact that you support several
avenues of interaction is great.” P3 actually preferred using a
magnet attached to her tongue for more fine-grain control,
but saw the appeal for people not wanting to place a magnet



HMDs & Wearables to Overcome Disabilities

in their mouth [1]. Tongue-in-Cheek could be useful for a
subset of the population due to its flexibility and non-
intrusiveness.

TECHNICAL EVALUATION & RESULTS

To evaluate the gesture detection accuracy, the users had to
perform repeated sets of gestures and our participants from
qualitative evaluation had limited availability; hence we
recruited eight participants (3 females) who did not have any
neuromuscular condition. They all used the same pair of
modified headphones. The initial adjustments were not very
different from the kind a user makes when using a pair of
headphones, i.e., adjusting the size of the headband and
adjusting the angle and reach of the microphone.

For each gesture class, participants had to perform 20
gestures. The order of the gesture classes was random. The
participants were told that they could perform the gestures by
either using their tongue, moving their lower jaw, or by
puffing their cheeks.

The system performs leave-one-out cross validation and the
system never uses the data for the same participant in training
as well as testing. The models are therefore global and do not
need to be adjusted for each user.

The system was able to correctly predict the direction of the
gesture with 94.3% accuracy. The confusion was greatest
between the up and down gestures. This was expected since
both of these gestures depend heavily on the variation in
output of the sensor placed under the user’s chin. The
accuracy for differentiating between tap and hold was 97.4%,
and the segmentation accuracy for the system was 93.6%.

Tongue-in-Cheek is agnostic to the source of movements,
i.e., tongue, cheek, or jaw, and we did not formally evaluate
how the system performed for these different movements.
The participants were told that they could use the three
motions independently.

APPLICATIONS

We applied Tongue-in-Cheek-based input to two different
applications. We recruited three of our original eight
participants to evaluate the applications (See video figure).

EdgeWrite

Inputting text on computing devices is an important
capability. We integrated EdgeWrite [6] into our system to
test if Tongue-in-Cheek could be used for text. Each
participant was asked to enter three simple English language
phrases. All three participants were able to correctly enter the
three phrases with an average text entry rate of 9 wpm.

Video Games

In order to test the responsiveness of our gesture detection
system, we asked the participants to play two different
games: Pac-Man and Contra. All participants were able to
play the games and expressed satisfaction with the system’s
responsiveness.

258

CHI 2015, Crossings, Seoul, Korea

These are just two example applications for Tongue-in-
Cheek. Our evaluation has shown that the system can reliably
detect gestures in four directions and can be useful for many
other general-purpose applications.

DISCUSSION AND LIMITATIONS

Systems like Tongue-in-Cheek that are designed for users
with neuromuscular conditions face an important challenge.
In most cases, such systems require the user to change their
lifestyle and go through training. Hence the users should be
able to use the device properly and actually enjoy using it.
Tongue-in-Cheek detects modular, and directional gestures
with no contact with the body. However, our interviews
highlighted that different individuals have different needs and
preferences. For example, Tongue-in-cheek is less intrusive,
but it is more visible than [1,3].

Near infrared (NIR) sensors can also be used for proximity
and motion sensing. Apart from being susceptible to dust and
light, NIR is less immune to physical properties of the
reflecting surface, hence might work differently for bearded
or clean-shaven user. On the flip side, RF is more prone to
ambient motion and headset movement. While this limitation
can be largely countered with an Inertial Measurement Unit,
we believe that our algorithms will work similarly for both
the sensors and the final decision on sensors will depend on
the user’s preference.

CONCLUSION

Motor neuron diseases such as ALS as well as serious brain
or spine injuries often result in severe paralysis. Patients can
benefit from systems that allow them to control their
environment non-intrusively. We present a facial gesture
detection system that robustly detects various facial gestures
in four directions. These gestures can be performed using the
user’s tongue, cheeks, or jaws. This capability allows the user
to seamlessly switch between different gesture modalities
and potentially feel less exerted.
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