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switch between different interaction modes. This was 
motivated by two observations: (1) cranial muscles are not 
trained for gestures and have a tendency to get tired after 
prolonged use, and (2) different individuals have different 
conditions. For example, in our evaluation one participant 
could not use their tongue for interaction but could easily 
puff the cheeks. This goal was aided by our choice of 
sensing approach. The motion sensors used in our prototype 
sense the direction of the motion. The system is only aware 
of the direction in which the gesture was performed and not 
the way the user performed it. This method helps the user to 
seamlessly switch between the gesture modes without the 
need to retrain or reconfigure the system. We carefully 
selected our gesture set to make sure that they are simple 
and modular. The gestures can be performed in all four 
directions and the differentiation of tap and hold means that 
the gestures can be combined to perform more complicated 
interactions. The video figure shows one such example for 
cursor control. The modularity of the gestures helps in 
overcoming the limitation of discrete gesture detection. 

The placement of three sensors around the face enables a 
simple detection of motion in three directions: left, right, 
and down. A gesture in one direction changes the signal in 
the corresponding sensor significantly more than the rest. 
We do not have a sensor in the “up” direction, which adds 
some complexity. Ideally, the upward motion of the skin 
would generate a reverse Doppler shift detected by the 
bottom sensor. However, this simple model does not 
accommodate the complexity of facial muscle structure; 
when a user touches their upper lips with their tongue, the 
entire area around the mouth moves, and all three sensors 
experience deviations in their low-frequency components. 
The bottom sensor experiences the most deviation, but not 
necessarily in the opposite direction as in the case of the 
“down” gesture (Figure 2). In the both the “up” and 
“down” gestures, the skin moves out (i.e., away from the 
user’s body) more than it moves up. However, our 
empirical experiments show that the signal is different for 
each of the four gestures and can be separately classified 
using standard machine learning techniques. 

Figure 2F shows an example of the observed low frequency 
signal for a hold-up gesture. This signal for bottom sensor 
is very different from the tap-up gesture shown in Figure 
2E. In case of hold, the magnitude does not oscillate 
because the muscles do not retract to resting position 
immediately.  

 
Figure 3. Tongue-in-Cheek’s algorithm  

Algorithm 
The output of the microwave motion sensors is a baseband 
signal representing the amplitude of the Doppler shift. An 
analog to digital converter (ADC) first digitizes the output 

from the motion sensors. Then a third order Butterworth 
Filter low-pass filters the data up to 15 Hz (Figure 3). After 
this we use two different processing pipelines to differentiate 
between tap and hold, and the four directions. The outputs 
from both the classifiers are combined in the end to form 
eight different gestures: tap-left, tap-right, tap-up, tap-down, 
hold-left, hold-right, hold-up, and hold-down. 

Tap vs. Hold Classification 
Figure 2 shows that the signal looks substantially different 
for the tap and hold gestures. We use a support vector 
machine (SVM) classifier here and the features are calculated 
across 1 sec windows with a 0.8 sec overlap. The overlap of 
0.8 sec assumes that the user would not perform two gestures 
within 0.2 sec. We first use mean filtering to downsample the 
low-pass filtered signal into 20 samples. These 20 data points 
from each of the three sensors gives us a total of 60 features 
for the SVM-based model. This particular processing 
pipeline does not do any segmentation. It simply calculates 
features across window. The second processing pipeline that 
classifies the gesture into one of the four directions performs 
the segmentation.  

Direction Classification 
Figure 3 shows that while differentiation between left, right, 
and down is very clear, the case of down vs. up is not that 
straightforward. Therefore, we cannot use a rule-based 
system and use decision trees to classify between the four 
directions, instead. We also added a class to represent when 
no gestures is being performed. This helped us in robust 
segmentation of real-time data. We calculate 3 features for 
each gesture: minimum, maximum, and variance of each 
1 second window. The variance is the most important feature 
in this classifier because it is clear from Figure 3 that the 
amount of change in signal is a big differentiating factor. The 
minimum and maximum features help in overcoming the 
noise in the data and provide dynamic thresholding to the 
decision trees. All the features are calculated over 1 second 
window with a 0.8 seconds overlap.  

QUALITATIVE EVALUATION 
We evaluated our choice of sensing mechanism and gesture-
set by demonstrating Tongue-in-cheek to three individuals 
with neuromuscular conditions. Two of the participants tried 
the system for almost 10 minutes each, and commented on 
the performance and the design. The third participant could 
not use the system personally and commented on the overall 
design and utility. P1 could not open his jaw far enough to 
instrument the inside of the mouth easily. Another side effect 
of his condition was tongue fasciculation – minor but 
constant involuntary muscle fluctuations across the tongue. 
These fluctuations were large enough to make tongue 
tracking hard, but the cheeks were relatively stable. 
Therefore, Tongue-in-Cheek was a relatively better approach 
for him as compared to [1,3]. P2 preferred switching between 
different modes and said, “the fact that you support several 
avenues of interaction is great.” P3 actually preferred using a 
magnet attached to her tongue for more fine-grain control, 
but saw the appeal for people not wanting to place a magnet 
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in their mouth [1]. Tongue-in-Cheek could be useful for a 
subset of the population due to its flexibility and non-
intrusiveness. 

TECHNICAL EVALUATION & RESULTS 
To evaluate the gesture detection accuracy, the users had to 
perform repeated sets of gestures and our participants from 
qualitative evaluation had limited availability; hence we 
recruited eight participants (3 females) who did not have any 
neuromuscular condition. They all used the same pair of 
modified headphones. The initial adjustments were not very 
different from the kind a user makes when using a pair of 
headphones, i.e., adjusting the size of the headband and 
adjusting the angle and reach of the microphone.  

For each gesture class, participants had to perform 20 
gestures. The order of the gesture classes was random. The 
participants were told that they could perform the gestures by 
either using their tongue, moving their lower jaw, or by 
puffing their cheeks.  

The system performs leave-one-out cross validation and the 
system never uses the data for the same participant in training 
as well as testing. The models are therefore global and do not 
need to be adjusted for each user.  

The system was able to correctly predict the direction of the 
gesture with 94.3% accuracy. The confusion was greatest 
between the up and down gestures. This was expected since 
both of these gestures depend heavily on the variation in 
output of the sensor placed under the user’s chin. The 
accuracy for differentiating between tap and hold was 97.4%, 
and the segmentation accuracy for the system was 93.6%.  

Tongue-in-Cheek is agnostic to the source of movements, 
i.e., tongue, cheek, or jaw, and we did not formally evaluate 
how the system performed for these different movements. 
The participants were told that they could use the three 
motions independently.  

APPLICATIONS 
We applied Tongue-in-Cheek-based input to two different 
applications. We recruited three of our original eight 
participants to evaluate the applications (See video figure).  

EdgeWrite  
Inputting text on computing devices is an important 
capability. We integrated EdgeWrite [6] into our system to 
test if Tongue-in-Cheek could be used for text. Each 
participant was asked to enter three simple English language 
phrases. All three participants were able to correctly enter the 
three phrases with an average text entry rate of 9 wpm.  

Video Games 
In order to test the responsiveness of our gesture detection 
system, we asked the participants to play two different 
games: Pac-Man and Contra. All participants were able to 
play the games and expressed satisfaction with the system’s 
responsiveness.  

These are just two example applications for Tongue-in-
Cheek. Our evaluation has shown that the system can reliably 
detect gestures in four directions and can be useful for many 
other general-purpose applications.  

DISCUSSION AND LIMITATIONS 
Systems like Tongue-in-Cheek that are designed for users 
with neuromuscular conditions face an important challenge. 
In most cases, such systems require the user to change their 
lifestyle and go through training. Hence the users should be 
able to use the device properly and actually enjoy using it. 
Tongue-in-Cheek detects modular, and directional gestures 
with no contact with the body. However, our interviews 
highlighted that different individuals have different needs and 
preferences. For example, Tongue-in-cheek is less intrusive, 
but it is more visible than [1,3].  

Near infrared (NIR) sensors can also be used for proximity 
and motion sensing. Apart from being susceptible to dust and 
light, NIR is less immune to physical properties of the 
reflecting surface, hence might work differently for bearded 
or clean-shaven user. On the flip side, RF is more prone to 
ambient motion and headset movement. While this limitation 
can be largely countered with an Inertial Measurement Unit, 
we believe that our algorithms will work similarly for both 
the sensors and the final decision on sensors will depend on 
the user’s preference.  

CONCLUSION 
Motor neuron diseases such as ALS as well as serious brain 
or spine injuries often result in severe paralysis. Patients can 
benefit from systems that allow them to control their 
environment non-intrusively. We present a facial gesture 
detection system that robustly detects various facial gestures 
in four directions. These gestures can be performed using the 
user’s tongue, cheeks, or jaws. This capability allows the user 
to seamlessly switch between different gesture modalities 
and potentially feel less exerted.  
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