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ABSTRACT
We conduct an extensive study of information leakage over
the powerline infrastructure from eight televisions (TVs)
spanning multiple makes, models, and underlying technolo-
gies. In addition to being of scientific interest, our findings
contribute to the overall debate of whether or not measure-
ments of residential powerlines reveal significant information
about the activities within a home. We find that the power
supplies of modern TVs produce discernible electromagnetic
interference (EMI) signatures that are indicative of the video
content being displayed. We measure the stability of these
signatures over time and across multiple instances of the
same TV model, as well as the robustness of these signatures
in the presence of other noisy electronic devices connected to
the same powerline.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Unauthorized access;
I.5.4 [Pattern Recognition]: Applications—Signal Process-
ing ; I.5.1 [Pattern Recognition]: Models—Neural Nets

General Terms
Security, Experimentation

Keywords
Information leakage, powerline security, electromagnetic in-
terference

1. INTRODUCTION
It is known that consumer electronic devices can leak some

information over powerlines, such as whether a particular
device is on or off [10, 23], or even information about specific
keystrokes on a keyboard [3, 28]. However, this knowledge
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is limited. In many cases, when faced with a given technol-
ogy and asked whether it leaks private information over the
powerline, our only possible answer is either a “maybe” or
a “probably.” The device probably leaks information about
whether it is on or off. It might also leak more fine-grained
information, but exactly what information we do not know.
Moreover, even if we can make an educated guess that a
device might leak some particular form of information, we do
not know how stable that information leakage channel is over
time or over multiple instances of the same technology, nor
how robust that information leakage is against interference
from other devices connected to the same powerline.
In tandem with the above observations, we find that nu-

merous technologies are being developed that will measure
information from residential powerlines. For example, utility
(power) companies are seeking to deploy smart meters that
measure fine-grained power usage for billing and demand-
prediction [27], and ubiquitous computing (ubicomp) sys-
tems similarly measure the powerline for activity recognition
purposes [10, 11, 23]. Future versions of these technolo-
gies may measure even more information. Returning to the
above-mentioned information leakage knowledge gap, there is
enough information today for privacy advocates to argue that
these powerline measurement should be treated as private [20],
thus motivating proposed policy changes, recommendations
to industry, and research on privacy-preserving mechanisms
for powerline measurements (e.g., [24]). Those opposed to
these recommendations argue that the privacy concerns are
overinflated. Unfortunately, the existence of the knowledge
gap means that both sides of the debate are proceeding with
incomplete knowledge and hence positions based in part on
conjecture. Thus, in addition to being of scientific interest,
new research is needed to inform this debate.
While it is infeasible to completely close this knowledge

gap and study all electronic devices and root out all pow-
erline information leakage channels, it is feasible—even if
daunting—to rigorously and extensively study individual
artifacts or classes of artifacts. For this study, we choose
to focus extensively on one of the most ubiquitous classes
of consumer electronic devices: modern televisions (TVs).
We choose TVs, rather than toasters or ovens, because TVs
have complex internal states— functions of the screen con-
tent being displayed—and thus present the potential for rich
information leakage.
Separately, our choice of TVs was driven by the legal

status of TVs and video viewing habits. Specifically, the
U.S. Video Protection Privacy Act of 1998 states that an
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Television Name Technology Date of Price
Fabrication (USD)

Panasonic-42-A Plasma Sept 2010 $1099
Panasonic-42-B Plasma Sept 2010 $1099
Samsung-58-A Plasma Sept 2010 $2599
Samsung-58-B Plasma Sept 2010 $2599
Samsung-32 LCD Oct 2007 $896
Sharp-42 LCD Sept 2008 $1399
Sharp-32-A LCD Dec 2009 $499
Sharp-32-B LCD Dec 2009 $499

Table 1: A summary of the tested TVs showing
make, technology, date of manufacture, and price
for each device.

individual’s video viewing records must be kept confidential.
Any research finding to the contrary— that a measurements
of a home’s powerline could reveal private information about
someone’s video viewing habits—could thus have significant
legal ramifications.
For breadth and depth, we obtained a collection of eight

TVs spanning three manufacturers (Panasonic, Samsung,
and Sharp),1 two technologies (LCD and Plasma), and three
sizes (32”, 42”, and 58”); see Table 1. We repeatedly played
video sequences on each of these TVs while recording the
electromagnetic interference (EMI) that these TVs produced
as measured on the powerlines; we obtained these measure-
ments using a separate single sensor attached to the same
powerline, though explicitly not between the TV and the
powerline itself. Our sensor’s access to the powerline thus
matches the access afforded to any other consumer electronic
plugged in somewhere within a home. We analyzed the EMI
in the frequency domain. We obtained initial measurements
in a clean laboratory setting, and then collected further mea-
surements in unrestricted home environments with diverse
collections of other noisy electronics attached to the same
powerline.

We find that all but the Sharp 32′′ TVs produce a signifi-
cant amount of stable, robust information leakage over the
powerline via EMI. As an example, for the Panasonic 42′′

TVs in a laboratory setting, we find that we can correctly
match a random 15 minute EMI trace from a movie to a
database of EMI signatures totaling 1200 movie minutes 96%
of the time (the remaining 4% were below our matching
threshold, not incorrectly matched); the hit rate drops to
92% in noisy home environments. More broadly, we sought
to develop an infrastructure capable of exploring answers to
the following five questions:

• Do TVs of different makes, models, and technologies
produce repeatable EMI, when given repeated screen
content?

• Does different screen content produce differentiable
EMI from a given TV?

• Is EMI consistent across multiple instances of TVs from
the same model family?

• Can we determine if someone is watching a particular
video by matching an EMI sample to a database of EMI
signatures?

1We do not have any reason to believe that our results are
specific to these manufacturers.

• Can we match EMI recorded in a lab setting to EMI
extracted in homes, especially when those homes might
have a diverse array of other consumer electronics con-
nected to the same powerline?

In general, we find that we are able to answer all these
questions affirmatively, though with some caveats and clarifi-
cations, e.g., clarifications on what it means for an EMI trace
to be “repeatable” or “consistent” and weaker results with the
Sharp 32′′ TVs. Although explicitly not our primary goal,
we also sought to conduct a preliminary investigation into
the following question:

• Can we learn to predict what EMI a TV would produce
given only screen content, i.e., without previous EMI
traces for that TV model when displaying the content
in question?

To summarize, our primary contribution is an extensive
study of powerline EMI information leakage from a diverse
collection of modern TVs, as well as the discovery that signif-
icant, stable, and robust information is, in fact, leaked from
these devices. Fortunately, from a privacy perspective, we
also observe that today’s utility companies are not collecting
the granularity of information necessary for repeating our
analyses, and the ubicomp technologies from the research
community that could collect this type of information are
not yet widely deployed. Nevertheless, these technologies are
surprisingly near-term, e.g., smart meters exist today that
report samples at 1 Hz but collect measurements at 3 kHz [7]
(our approach in contrast samples at 500 kHz and uses mea-
surements at 2 Hz) and we anticipate higher sampling rates
in the near future.
Although these emerging technologies enable important

applications, we stress here that the policies enacted today
could help inform future utility and ubicomp deployments,
and hence we argue that it is important to understand these
findings today, before new technologies in or attached to
the home begin to collect and store fine-grained powerline
measurements at a large scale.

2. TECHNICAL FOUNDATIONS
Modern consumer electronics utilize switched mode power

supplies (SMPS), which are increasingly employed due to
their higher efficiency and smaller form factor. Energy Star
even mandates the use of this kind of power supply for most
consumer electronic devices. We anticipate that the preva-
lence of SMPS will only increase as hardware manufacturers
face continued pressure from political and market forces de-
manding higher levels of efficiency and miniaturization. The
materials described here are either known or easily inferred
from past work and an understanding of how electrical devices
operate, e.g., [10].

SMPS as EMI Sources. Despite the advantages SMPS
provide, one side effect of SMPS’s operation is that they
inadvertently produce electromagnetic interference (EMI).
The EMI is a consequence of the voltage conversion method
that SMPS employ and it’s characteristics are proportional
to the rate at which the conversion in the power supply takes
place. This rate, also known as the switching frequency, is
dynamically adjusted to meet the power requirements of the
appliance driven by the SMPS. In sum, the changing power
demands of an electronic device cause dynamic adjustments
to the SMPS’s switching frequency which in turn modulates
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Figure 1: Frequency spectrogram showing various
electrical appliances in the home. Washer cycle on
(1) and off (2). CFL lamp turning off briefly (3) and
then on (4). Note that the TV’s (Sharp 42” LCD)
EMI shifts in frequency, which happens as screen
content changes.

the EMI signal. To prevent high levels of inadvertent EMI
from adversely influencing the operation of neighboring de-
vices, the Federal Communications Commission (FCC) in the
U.S. limits the amount of interference that a device can emit
to -40dBm for the frequency range of 1–500 kHz (47CFR part
15/18 Consumer Emission Limits); however the regulation
threshold is weak from an information leakage perspective
since EMI measurements can be accurately done using inex-
pensive hardware (the circuit we describe is sensitive to -100
dBm).

Noise Propagation. The EMI generated by SMPS de-
vices is coupled onto the powerline and propagates throughout
the electric infrastructure (i.e., a home) while retaining its
signal qualities. In our tests we were able to capture robust
signals several hundred feet away from the EMI source. We
leverage this property and demonstrate that a single sensor
anywhere along a home’s powerline (including outdoor out-
lets) can observe the conducted EMI signals from numerous
connected SMPS-based devices.

Signal Characteristics. The raw signals we gather with
our powerline interface (PLI) (detailed in Section 5) are
not particularly meaningful unless analyzed in the frequency
domain. To transform the signal from a sequence of data
points in time to a set of energies at various frequencies,
we digitize the analog readings and compute a Fast Fourier
Transform (described in detail later in the paper). The goal
of these engineering operations is to allow us to analyze
EMI fluctuations as changes in power over frequency space
(visualized in Figure 1).

Figure 1 presents a waterfall plot of the EMI observed in
a typical home; note the rich information landscape which
unfolds when the frequencies of EMI signals (horizontal axis)
are plotted against time (vertical axis). In this snapshot we
observe that several devices are in continuous operation (PC,
television, and washer) while others are turning on and off
(compact fluorescent lamp (CFL)).

There are several interesting features in this data, which
provide a good reference point for discussing the general
EMI signal characteristics that we observed across our many
experiments. In particular:

• Each SMPS device produces some conducted EMI, and
the presence or absence of this signal is a direct conse-
quence of the power state of the device.

• The EMI signature of each device is centered around
the switching frequency of its power supply; different de-
vices often occupy distinct frequency ranges allowing for
their noise signals to coexist with minimal interference.
However signal overlap is possible, and increasingly
likely if many active devices share the same powerline.

• Changes in EMI can manifest in frequency shifts, energy
density changes, or both. These properties are visible
in Figure 1 as the TV exhibits frequency shift EMI,
while the washer signal produces density changes.

Note that EMI signals vary as a function of the operation of
the device, e.g., washer EMI increases in energy density when
the barrel is rotated during the spin cycle, and TV EMI is
modulated in frequency as the screen content changes. We
explore this phenomenon more deeply in our investigations
below.

3. RELATED WORK
Our work builds on and complements past work in the activ-

ity recognition, energy monitoring, and information leakage.

Activity Recognition & Energy Monitoring. Detect-
ing electrical device activity and power consumption in the
home has historically been done in the distributed sensing
model wherein each device being tracked is instrumented
with a dedicated sensor. This one-sensor-per-device model
is limiting because, as the name suggests, every monitored
device requires separate sensor installation and maintenance.
However, research dating from the 1980s in single-point sens-
ing of electrical events has focused on the design of new in-line
metering techniques for monitoring whole-house appliance
usage [11]. This early work used a current sensor installed
in-line with a home’s power meter to monitor voltage and
current waveforms from the incoming power to the home.
The methods used in these original studies combined mea-
surements of (1) step changes in power, (2) the active and
reactive power of the home, and (3) time of day statistics.
These data sources were combined to detect and classify
individual appliance usage.

Recent advances in infrastructure-mediated sensing (IMS)
from the ubicomp literature have provided an alternative
approach for detection of events on the home’s utility infras-
tructure [6, 9, 10, 22, 23]. These methods focus on leveraging
incidental signals such as the EMI from electrical appliances
and water pressure changes from plumbing fixtures for in-
ferring appliance usage and thus in-home activity from a
single-point. We were inspired by this line of work and have
based our sensor architecture on the design of a power line
interface introduced in [10] to capture EMI present on a
home’s powerline. The primary focus of the existing research
on electrical sensing has been on detecting and differentiat-
ing between appliances, whether by measurements of overall
power consumption [11] or via the presence/absence of char-
acteristic signals in the EMI when analyzed in the frequency
domain [10].
To surface privacy concerns, Molina-Markham et al. re-

cently highlighted that monitoring the home’s aggregate
power consumption can reveal private information about a
homeowner’s activity [21]. This work used methods from
prior work in the energy monitoring and ubiquitous comput-
ing communities. Specifically, these authors use power usage
patterns of the on/off states of electrical device to show that
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privacy inferences are possible using seemingly innocuous
data (e.g., power activity every few hours during the night
may indicate regular feedings of a newborn).

Unlike prior work, which analyzes the state and identity of
appliances, we use a different method to track a continuously
varying signal. If we compare the EMI acquisition sensor to a
microphone, an appropriate analogy would be that previous
work has been able to detect the presence of speech and
potentially who is speaking while our contribution enables
us to understand what is being said. Concurrent to our own
work, Clark et al. study powerline information leakage when
a PC visits a Web page [5]. They evaluated their approach
with eight websites and a single PC; their measurements
instrument the connected outlet, whereas our measurements
can take place anywhere on the powerline.

Security & Information Leakage. In the security lit-
erature, evidence suggests that the government has long
known that ancillary EM emissions from CRT monitors leak
private information about what those devices might be dis-
playing [8, 12, 16]. Early work on studying electromagnetic
leakage from CRTs has since been extended to flat-panel
displays [17] and wired and wireless keyboards [3, 28].

There are important commonalities between all these works,
e.g., they all seek to extract as much information as possible
from the observed EMI noise. There are, however, also im-
portant differences. We focus on modern LCD and Plasma
systems manufactured between 2007 and 2010. More funda-
mentally, we find that there are inherent differences in the
types of signals we analyze. For example, both [3] and [28]
leverage EMI resulting from a keyboard’s digital transmission
of bits corresponding to key presses. Past works on CRTs/L-
CDs similarly looked at analog/digital transmissions within
the TVs [8, 12, 16, 17], however there is an additional level
of indirection in the EMI information leakage that we exploit
in this paper. Specifically, although the TV’s video content
is transmitted digitally within the TV, we do not knowingly
extract any information about that digital content. Rather,
we extract information from EMI emitted from the TV’s
power supply as it drives the video display, which consumes
varying power.

The security community has also explored numerous other
classes of information leakage, including: the time to perform
various tasks (e.g., [13]), optical emanations (e.g., [19] for
network appliances and [15] for CRTs), acoustic emanations
(e.g., for printers [4], CPUs [26], and keyboards [1]), and
reflections (e.g., [2]). There is also security research focused
on the modern television showing that it is possible to infer
what someone is watching over an encrypted wireless video
stream from the size of the transmitted packets [25]; that ap-
proach exploits information leakage through variable bitrate
encoding schemes, which was pioneered in [29]. Related to
power consumption, but far afield from our own work, is the
broad area of power analysis and differential power analysis
for cryptographic processors [14].

4. CONTEXT AND THREAT MODEL
This work focuses on understanding and assessing how

information might leak from a highly popular consumer elec-
tronic device: the TV. In this section we characterize the
threat models under which our results are the most applicable.
We stress, however, that (in our opinion) the results in this
paper are of scientific interest independent of any particular
threat model or policy question.

We consider three key axes for our threat model: the
type of attacker, the adversarial goals, and the adversarial
resources. We consider each in turn.

Attacker Type. We consider two key types of attackers:

• Intentional Attacker. An entity seeking to violate
the privacy of an individual; may attach an adversarial
monitoring device to the victim’s powerline.

• Unintentional “Attacker.” A party that attaches a
monitoring device to a powerline for legitimate purposes
(e.g., a smart meter or a ubicomp device). The word
“attacker” is in quotes because the party in question is
not malicious. Rather, the attached device will record
measurements from the powerline for non-malicious
purposes. The device may store those measurements
locally or transmit (a function of) those measurements
to an external server for processing and/or storage.

An intentional attacker could, for example, plug a sensor into
an exterior outlet on a neighbor’s home and thereby monitor
EMI on the neighbor’s powerline. We observe, however, that
if the attacker could enter the neighbor’s home, then the
attacker might also explore even more devious attacks, such
as hiding a webcam in a sensitive location. Thus, the most
likely intentional attacker is one that does not have direct
physical access to the monitored space (the interior of a home,
apartment, or dorm room) but that does have direct physical
access to the powerline (e.g., via an external outlet). The
device could also be disguised as a different device, such as a
harmless power adaptor or DVD player.
A more pressing concern is likely the unintentional “at-

tacker.” Consider, for example, this scenario recounted in a
recent joint filing before the State of California by the Center
for Democracy & Technology and the Electronic Frontier
Foundation [20]:

Government agents issued a subpoena to the sus-
pect’s utility to obtain energy usage records and
then used a utility-prepared “guide for estimating
appropriate power usage relative to square footage,
type of heating and accessories, and the number of
people who occupy the residence” to show that the
suspect’s power usage was “excessive” and thus
“consistent with” a marijuana-growing operation.

As smart meters and ubicomp devices begin to collect increas-
ingly fine-grained measurements from the home powerline
for legitimate purposes (e.g., demand prediction, activity
recognition, green energy recommendations), it is important
to understand how those measurements could be misappro-
priated in the future.

Adversarial Goals. We consider two adversarial goals:

• Target Video Identification. An adversary might
seek to determine whether the victim is watching a
target video.

• Target Channel Identification. An adversary might
seek to infer what TV channel the victim is watching.

In both cases the adversary might either be an intentional
attacker or someone analyzing the data collected by an unin-
tentional “attacker.” For target video identification, the ad-
versary may seek to determine whether the victim is viewing
a video from a “watch list” of sensitive titles, e.g., politically
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sensitive videos, religious videos, terrorist training videos.
For target channel identification, we observe that the chan-
nel a person watches may reveal private information, e.g.,
political views, religion, known languages. The severity of
these adversarial goals may be a function of the environment
in which the victim lives. Within the U.S., we recall that
an individual’s video viewing records is considered highly
sensitive pursuant to the Video Protection Privacy Act.

Our choice of these adversarial goals is driven by scale. For
target channel identification, the attacker may know that
a victim is watching one of a handful (a dozen or possibly
a hundred) channels. Determining which channel a person
is watching out of a small finite set of possible channels is
far more feasible than determining which video a person is
watching from the set of all possible videos. For target video
identification, the goal is still significantly more feasible than
determining which video a person is watching from the set
of all possible videos—rather, the adversary must only be
able to detect the viewing of specific videos.
Although we did not explore the following, we conjecture

that our approach could also be used to estimate whether an
individual is watching a pirated movie, if that pirated movie
has some (possibly slight) deviation from the authorized copy
of that movie. For example, if a pirated movie begins with
a characteristic opening sequence—e.g., the opening ani-
mation inserted by the pirating organization, or an opening
sequence that announces that the video is for the exclusive
use by members of the Academy of Motion Picture Arts and
Sciences— then that opening sequence might reveal itself in
the leaked EMI. We explicitly did not investigate the identi-
fication of pirated content. But, as evidence of plausibility,
over the course of our experiments we did develop the capa-
bility to visually distinguish between the splash screens for
different studios (e.g., MGM, Twentieth Century Fox, etc.).
The lack of these splash screens or the FBI warning screen
on a DVD could also be an indicator.

Adversarial Resources. Finally, in addition to assuming
that the attacker has the ability to obtain sufficient quality
measurements from the victim’s powerline, we assume that
the attacker knows the type of TV that the victim is using.
Although not the focus of this paper, we consider extensions
in Section 10 where this is not necessary. Although outside
the scope of this paper, we also conjecture that a second
level classifier could be designed to infer the model of TV
based on the operational characteristics of the SMPS, which
is also discussed in prior work [10]. Finally, we assume that
the attacker has access to the videos that he or she seeks to
identify (e.g., DVDs for the target videos or feeds from all
the channels that the victim might be watching).

5. SYSTEM DESCRIPTION
We now turn our attention to describing the data acquisi-

tion and post-processing components we used for our experi-
ments. See Figure 2.

EMI Capture Hardware and Signal Processing. Our
system consists of three main components. First, we connect
a custom power line interface (PLI) module to any available
electrical outlet in the recording environment to gather the
conducted EMI signal. Second, we use a high-speed data ac-
quisition module to digitize the incoming analog signals from
the PLI. Lastly, we use a data collection and analysis PC

Figure 2: Components of our EMI capture hardware:
Power Line Interface (P) for filtering 60 Hz signal
voltage sensing, high speed digitizer (U) for analog
to digital conversion of signals and an isolation trans-
former (I) for filtering EMI from other devices in our
laboratory environment. The Sharp 42” LCD TV
and the data logging PC are also visible. We also
connect a spectrum analyzer (S) for debugging pur-
poses and for visualizing the real-time EMI signal as
a waterfall plot.

running our software to condition and process the incoming
signals from the digitizer.

Harvesting EMI. The power line interface (PLI) that we
designed to capture EMI was modeled on the circuit described
in [10] with slight modifications to increase sensitivity at a
broader frequency range. Our PLI module is essentially a
high pass filter, composed of 3 resistors and 2 capacitors
arranged as depicted in the schematic in Figure 3. This
circuit design yields a RC high-pass filter which has two
important properties. First, as in [10] it removes the 60
Hz frequency which is the rate at which alternating current
(AC) is supplied in the U.S.; if this filter is not included, the
60 Hz signal would overwhelm our capture system yielding
unusable data (and also potentially damaging any connected
low voltage hardware). Second, the filter has a flat frequency
response between 6 and 30,000 kHz which allows us to capture
any conducted EMI in this expansive frequency band.

Post Processing and Automation. To transform the
EMI data into the frequency domain, we fed the analog
signal from the PLI into a USRP (Universal Software Radio
Peripheral), which acts as a high-speed digitizer. We set the
sampling rate of the USRP to 500 kHz, which allows us to
effectively analyze the spectrum from 0 to 250 kHz (under
the Nyquist Theorem). We found no interesting television
signals beyond 250 kHz.

The digitized data from the USRP is then streamed in real
time over a USB 2.0 connection to a PC running customized
GNU Radio software. The PC processes the incoming data
and computes a Blackman-Harris windowed (size half of FFT
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Figure 3: Schematic of the Power Line Interface,
modified from [10] for broader sensitivity.

length) Fast Fourier Transform (FFT) 122 times a second
to produce a vector of 2048 points which are spread uni-
formly over the spectral range (from 0 to 250 kHz). Next
we compute the squared magnitude of each FFT vector and
store the result on disk for post-processing. Our experimen-
tal infrastructure is highly automated; it can automatically
stream video content to TVs while simultaneously logging
EMI signals.

Lab vs Home Setup. Over the course of our experimen-
tal analysis we collected EMI data from lab and home settings.
During lab recordings, we connected the TV being tested
and our PLI sensor to the output of an isolation transformer
(model Tripp Lite IS500HG). The isolation transformer re-
duces electrical noise and EMI present on the power line
and presents a cleaner AC power at it’s output 2. Generally,
isolation transformers are used to protect against electric
shock, or to suppress electrical noise in sensitive devices such
as high-end audio systems.

Conversely, in home recordings, we did not use the isolation
transformer but rather connected the PLI directly to any
available electrical outlet. This meant that we were no longer
guaranteed a clean electrical background, and our target EMI
could now be affected by the noise produced by any of the
devices on the powerline.

6. SELECTION OF TVS AND MOVIES
To evaluate the level of EMI based information leakage

in modern TVs, we procured a set of eight TVs that differ
along a number of axes including: manufacturer (Panasonic,
Samsung, Sharp), display technology (LCD or Plasma), size
(32′′, 42′′, 58′′), and date of manufacturing (2007–2010).

Table 1 summarizes our hardware selection. We opted
for an equal distribution of LCDs and Plasmas—the two
dominant technologies currently on the market. Furthermore
we deliberately selected three pairs of duplicate TV models
to enable analysis of EMI signature similarity across identical
hardware. This table also introduces a naming scheme which
we use in the remainder of the paper. Under this convention,
television names include manufacturer, size, and model-pair
information. For example the name Samsung-32 indicates
that the Samsung TV is 32′′ and that we have only one model
instance; similarly, Panasonic-42-A is a 42′′ Panasonic TV
which is the first of a pair (as indicated by the “A”).

Next we needed to choose what video signals to send to the
TVs while recording EMI. For experimental feasibility, we
opted to create a 20 movie database. To make our movie selec-

2We recognize that a ’Line Impedance Stabilization Network’
LISN device would have provided a more optimally stable
and repeatable signal; however, we expect a LISN to only
improve the already high matching accuracies achieved with
our acquisition hardware.

Genre Movie
Action (1) Lord of the Rings: Return of the

King, (2) Star Wars V: Empire Strikes
Back, (3) The Bourne Ultimatum, (4)
The Matrix

Animation (5) Wall-E, (6) Shrek 2, (7) The Lion
King, (8) Aladdin

Comedy (9) Office Space, (10) Meet the Par-
ents, (11) The Hangover, (12) Wedding
Crashers

Documentary (13) Planet Earth: Fresh Waters, (14)
Food Inc., (15) An Inconvenient Truth,
(16) Top Gear (Season 4;Episode 7)

Drama (17) The Shawshank Redemption, (18)
American Beauty, (19) Titanic, (20) Re-
quiem for a Dream

Table 2: List of twenty movies that we included in
our dataset selected such that they span various gen-
res.

tion systematic, we chose four top-rated films within each of
five distinct genres (ratings were extracted from the Internet
movie database, imdb.com). Since these movies had variable
running times, we limited our analysis to the first 60 minutes
of each DVD video stream. Table 2 lists the movies that
constitute our library. Looking ahead, our results suggest
that our methodology is applicable far beyond a collection
of 20 target movies. Nevertheless, we note that past work
on video information leakage also studied a similarly-sized
collection of movies (26 movies), though in a very different
context (information leakage from streaming encrypted video
data) [25]. Returning to the threat model in Section 4, we
also argue that distinguishing between 20 movies approxi-
mates the adversarial goal of target channel identification.
In our experiments we also embed random portions of these
20 movies into streaming TV signals and assess our ability
to detect the embedded videos, thereby approximating the
adversarial goal of target video identification.

7. DATA COLLECTION PROCEDURE
We performed recordings on each of our 8 TVs in a lab

environment where we could carefully regulate the electrical
conditions. This data accounted for 13 days of EMI traces,
and provided the foundation of most of our analysis. Next,
we selected a single TV (Panasonic-42-B) and deployed our
system to three home locations to gather data in electrically
uncontrolled settings. Lastly, we recorded EMI from 20
hours of broadcast programming, which was the basis of the
experiment described in Section 9.5.

Lab Recording. During lab recordings, we plugged a
given TV and our voltage sensor into an isolation transformer
to remove interference from other electrical devices in the
building. We then streamed our database of 20 movies twice3

while logging EMI in the 6 to 250 kHz range.

Home Recording. To evaluate EMI based information
leakage under a more naturalistic setting, we also performed
data collection in three homes with distinct sizes, neigh-
borhoods, ages (1906, 2003, 2009), and styles (apartment,
suburban house, multi-family home) on a subset of our movie
database (12 movies, 15 minutes each). Table 3 shows the

3Two runs of our movie library were recorded on each TV to
investigate the repeatability of EMI signatures.
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ID Style/ Year Built Size/Floors
H1 Single family Home/2003 3000 sq. ft/ 2 flrs
H2 Apartment/2009 657 sq. ft/ 1 flr
H3 Multi-family Home/1906 800 sq. ft/ 3 flrs(*)

Table 3: A summary of the homes showing the style,
size and number of floors. (*) 800 sq. ft refers to only
one apartment in a converted multi-family home.

specifications for these residences. During the home data
collection, we did not prevent occupants from actuating elec-
trical devices and we also did not use the isolation trans-
former. Also, we plugged in our sensor in a arbitrarily chosen
electrical outlet that was available. Thus, we captured not
only the EMI from the TV but also any number of active
electrical devices operating in the home under natural con-
ditions (e.g., lamps, kitchen appliances, computers, other
televisions). Many times during our home data collection
EMI from other devices overlapped with the EMI from the
TV under investigation. In addition, Home#2 used power
line communication (PLC) during recordings, however we did
not observe significant signal interference since home PLC
signals are typically narrow-band in our recording range.

8. SIGNAL CONDITIONING
Automated Signal Identification. To facilitate analy-
sis we needed to devise a method for extracting meaningful
signals from the FFT data captured using our hardware. Re-
calling the properties of EMI we described in Section 2, we see
that there are two critical questions which must be answered
in order to track the signature of a particular device: (1) in
what range of the frequency spectrum does the EMI signal
reside, and (2) in what way does the EMI signal fluctuate
with changes in device state.

Although it is often possible to answer both of these ques-
tions by visual inspection of a spectrum analyzer during
device operation, we sought to develop a systematic search
procedure which played a 5 minute custom software-generated
video while performing a range sweep to find EMI changes
that are strongly correlated in time with the controlled sig-
nal. The search method was designed to determine the EMI
frequency range, fluctuation type (frequency or energy den-
sity), and to ultimately produce a 1-dimensional time series
representation (EMI trace) normalized to the 0:1 domain.

The search algorithm requires FFT samples extracted from
EMI over the 0 to 250 kHz frequency range collected during
controlled video signal playback (36600 total FFT samples).
Given this input our procedure analyzes subsets (windows)
of the frequency spectrum and correlates their EMI trace
(computed as both energy density and frequency shift) to the
trace of brightness changes in the software-generated video
4. At the end of the sweep, the optimal 1-dimensional EMI
trace is returned which produced maximal correlations to the
control signal (the search is performed across all frequency
windows and signal types). The functions we applied are
shown below in pseudo-code using the array syntax initial-
value:final-value common to the MATLAB programming
language. Smoothing is done using a 4th order Butterworth
filter with a cutoff frequency of 10 kHz; decimation is done
using eighth-order lowpass Chebyshev Type I filter with

4Our experiments led us to conclude that artificially gener-
ated color gradients work well as control signals.

Television Name Freq. Range Signal Type
Panasonic-42-A/B 1 to 60 kHz Energy Density
Samsung-58-A/B 45 to 55 kHz Frequency Shift
Samsung-32 10 to 50 kHz Energy Density
Sharp-42 60 to 90 kHz Frequency Shift
Sharp-32-A/B 35 to 40 kHz Energy Density

Table 4: Frequency regions and EMI signal types for
our 8 TVs.

a cutoff frequency of 0.8 ∗ (Fs/2)/r where r = 20 is the
decimation factor; standard normalization is performed to
shift the domain to 0:1.
Using the EMI search procedure, we were able to charac-

terize the EMI signatures for all of the TVs in the lab setting
(Table 4). In addition, the search method proved invaluable
when we analyzed EMI from home recordings as different
residences had unique levels of dynamic background noise
which overlapped with tracking ranges we found in lab; our
methods were always able to find frequency regions minimally
influenced by the other powerline noise and thus enabled us
to recover the TV EMI signal (due to harmonics).

EMI search procedure:
var EMI := fft(range := 0 : 250kHz, time := 1 : 36600);

var target := brightnessGradient(controlV ideo);
begin

for r := 1 to 250 step 2 do
for len := 10 to 60 step 10 do

if r + len > 250 then continue fi;
rEnd := r + len;
[freqEMI, densEMI] := extractEMI(r, rEnd);
fCorr(r, len) := xcorr(freqEMI, target);
dCorr(r, len) := xcorr(densEMI, target);

od
od
[optRange, sigType] := maxr,len(fCorr, dCorr)
proc extractEMI(start, end) ≡

type1 := sum(EMI(start : end, 1 : 36600);
type2 := maxIndex(EMI(start : end, 1 : 36600);
densEMI := normalize(decimate(smooth(type1)))
freqEMI := normalize(decimate(smooth(type2)))

.
end

9. ANALYSIS AND RESULTS
We began by experimentally establishing that individual

televisions produce repeatable EMI traces when the same
video content is shown multiple times. Building on this
result, we show that the EMI signals produced by multiple
TVs of the same model are highly correlated given identical
video inputs. We then use our collection of 20 movies to
study the ability of an attacker to match the EMI collected
from one movie with a database of previously collected EMI
measurements from all 20 movies. Together, these results
suggest that an attacker can use TV EMI to accomplish the
target channel identification goal from Section 4 with high
confidence. Next, we study the feasibility of our approach in
three home environments, where additional signals sources
are active on the power line. The data from homes also allows
us to reason about the possibility of matching EMI traces
gathered in an electrically clean setting to those collected
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Figure 4: Cross Correlation results at various query
lengths.

Figure 5: Matching results for Pan-42-A vs Pan-42-
B for varying query lengths.

from noisy environments (i.e., matches are possible between
lab and home EMI). Finally, we showcase the robustness of
our methods by accurately identifying segments of EMI from
our movie database that have been embedded within a stream
of foreign EMI (20 hours of local television broadcasting),
thus providing strong evidence that an attacker can also use
TV EMI to accomplish the target video identification goal
from Section 4 with high confidence.

9.1 Signal Repeatability in Lab
Individual TVs. The first question we sought to answer
was whether repeated video content played on a target TV
would produce consistent EMI. To test this, we computed
the cross-correlation of a movie’s EMI trace between multiple
recording sessions. The left column of Table 5 contains the
cross-correlation statistics when this computation was applied
to every movie in our database and repeated for each TV,
using only the first 15 minutes of each trace. These levels
of high cross-correlation suggest that for most televisions
multiple runs of identical video content produced consistently
similar EMI. The exceptions, which we consider in more

Figure 6: Matching results for Sharp-32-A vs Sharp-
32-B for varying query lengths.

depth later, are the Sharp 32′′ TVs. Conversely, dissimilar
video content tended to produce highly uncorrelated EMI
traces. The latter conclusion was drawn from the results of
our followup experiment which analyzed the potential for
similarity between EMI traces from different video streams.
More specifically, we recorded the highest levels of cross-
correlation possible while matching a movie against all other
films in the database (itself excluded); our measurements are
reported in the right column of Table 5.

Model Families. While the above findings indicate signif-
icant information leakage within a TV, it’s not clear whether
this leakage poses a significant threat to privacy. The ques-
tion arises: can an attacker infer information from the EMI
of a TV that he or she is not able to physically access? We
explore that question here by assessing how similar the EMI
is between two TVs of the same model. We performed this
test by replicating the methods above, but instead of com-
paring EMI signals from multiple recording sessions on a
single TV we analyzed the correlations between EMI signals
between single sessions of EMI recorded on TVs within the
same model family (i.e., Panasonic-42-A vs Panasonic-42-B,
Samsung-58-A vs Samsung-58-B, and Sharp-32-A vs Sharp-
32-B). As before, we computed the EMI similarity of identical
content (Table 6, left column) as well as distinct content (each
movie against all others, Table 6, right column).

Discussion. The experiments suggested that, with few
exceptions, EMI from identical video signals are highly re-
peatable while distinct video sources yield independent EMI
signals. These results were shown to hold within individual
TVs as well as across pairs of TVs within a model family. In
both cases, the Sharp 32′′ TVs produced outlier data points,
reflecting a significant decrease in EMI consistency relative
to the averages of other TVs. We attribute this to the fact
that these devices had the least dynamic EMI (minimally
modulated by screen content changes) within the televisions
we tested. We tested the power consumption of the Sharp 32′′

TVs and found that their power draw changed by only 1W
(175W to 176W) when playing a software generated custom
video, whereas the Sharp 42′′ TV exhibited a 24W (190W
to 214W) change using the same video signal. Thus we at-
tribute the small dynamic shifts in EMI of the Sharp 32′′ to
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TV
Cross Correlation Cross Correlation
Same Content (%) Different Content (%)

Average Standard Deviation Average Standard Deviation
Panasonic-42-A 98.18 ±2.77 60.36 ±12.83
Panasonic-42-B 98.99 ±0.98 59.51 ±12.97
Samsung-58-A 97.47 ±1.97 53.29 ±10.22
Samsung-58-B 96.71 ±2.73 53.37 ±9.70
Samsung-32 98.26 ±5.21 65.56 ±16
Sharp-42 97.30 ±8.26 63.45 ±12.84
Sharp-32-A 60.03 ±8.12 56.41 ±5.10
Sharp-32-B 60.91 ±8.39 56.39 ±5.79

Table 5: Analysis of EMI signal similarity given identical and different video content within a TV - averaged
over the 15 minute intro segment of all movies.

TV
Best Cross Correlation Best Cross Correlation

Same Content (%) Different Content (%)
Average Standard Deviation Average Standard Deviation

Panasonic-42-A and B 96.82 ±4.67 59.93 ±12.85
Samsung-58-A and B 94.96 ±9.23 59.30 ±10.09
Sharp-32-A and B 77.21 ±18.84 53.31 ±12.96

Table 6: Analysis of EMI signal similarity given identical and different video content between TV pairs
(averaged over all movies). For this we used randomly selected 15 minute streams from each 60 minute movie

the power consumption characteristics of the circuitry. There
is also a possibility that this particular model incorporates a
fixed frequency power supply.

9.2 Signal Matching and Query Length
Our initial experiments suggested that extracted EMI sig-

nals are consistent within TVs as well as between identical
models using cross correlations computed over 15 minute
segments of content. We next evaluated how varying the
length of EMI traces impacts signal repeatability and differ-
entiability.

We designed a search procedure that would take as input a
full EMI trace of a movie and extract 10 query segments (of
variable lengths) from multiple (randomly chosen) starting
indexes along the 60 minute stream. Each query segment
would then be matched against the EMI signals of the en-
tire movie database (using sliding-window cross correlation),
and the highest correlated match would be returned. This
technique is also referred to as matched filtering in signal
processing communities. We applied this procedure to find
matching signals between TVs of the same model; query data
would be extracted from the EMI library of the first TV in
the pair, and the database signals would come from the other
(e.g., query = EMI from Panasonic-42-A, database = EMI
from Panasonic-42-B).

We performed a series of runs using query lengths ranging
between 1 and 15 minutes (1, 3, 6, 9, 12 and 15 mins) and
in each instance computed the cross correlation between the
query and its best match (averaged across 10 samples for
each query length). The matching results for the three TV
model pairs are show in Figure 4. Even short length queries
tend to find highly correlated matches in the database. In
particular, for TVs with repeatable EMI signals, once the
query length reaches 6 minutes the correlation reaches 93.7%.

Interestingly, for the Sharp-32-A and B TVs, longer queries
led to degraded performance. We attribute this to the weak
EMI signatures of these TVs (as previously mentioned) which
are susceptible to noise whenever the EMI signal is not being

modulated along its entire dynamic range. However, the
Sharp-42 performed very well with just short queries.

9.3 Reducing False Matches
Usually the best correlated match to a query (returned

by our search procedure) was taken from the trace of the
same movie in the database; however this was not always
the case and we address this issue in the current section.
To develop a method that would reduce false matches, we
modified our matching algorithm to withhold query responses
unless the top correlation match was a “clear winner” and
was separated from the next best candidate by a margin of
5%. We experimented with multiple settings of this threshold
parameter (including setting its value to be proportional to
the number of samples in the query) but found that the
5% level provided a good trade-off between numbers of false
positives and rejected samples given the query lengths and
dataset size we tested (we provide a lengthier discussion of
the threshold value choice in the Appendix B).

Given this modified search procedure, each query could be
classified into one of three bins:

• Miss: the search engine is confident in the match
(accept) but there is a mismatch between the search
engine’s best guess and the query origin. (Failure.)

• Hit: the search engine is confident in the match (accept)
and the match was the movie from which the query
itself was extracted. (Success.)

• Reject: the best match was a not a “clear winner,”
and the matching algorithm chooses not to respond.
(Neither success nor failure.)

In Figure 5 and Figure 6 we respectively show the distribu-
tion of queries into these bins as a function of query length
for the TVs which were the best (Panasonic 42′′) and worst
performers (Sharp 32′′) on the test for signal repeatability
within a model family.

We note that the Sharp 32′′ A vs B data causes a very high
rejection rate due to the consistent lack of a “clear winner,”
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Figure 7: Distribution of queries into rejected, hit
and miss for lab vs home data for Panasonic-42.

in addition further strengthening the hypothesis that the
Sharp 32′′ A & B are very sensitive to noise. Conversely the
Panasonic 42′′ A vs B data quickly reaches a high hit rate
(and low rejection rate). In all cases the miss rate was low.
This method is therefore less influenced by noise; queries
that result in a match (non-reject) have a high probability of
being correct.

9.4 Home Results
Having found evidence of significant information leakage

within a lab setting, we next turned to evaluating our ap-
proach in a more natural environment. We wanted to deploy a
TV in multiple homes and see if we could match queries from
home EMI to lab EMI datasets. In choosing which television
to utilize for our residential recordings, we initially restricted
the candidate pool to TVs for which we had duplicate models
(Panasonic-42-A&B, Samsung-58-A&B, and Sharp-32-A&B).
We rejected the Sharp 32′′ TVs based on their weak EMI
signatures. Given the choice between the Panasonic 42′′ TVs
and Samsung 58′′ TVs, we selected the smaller TVs because
they were significantly easier to transport.
We set up our system (Panasonic-42-B, PLI, and logging

equipment) in three different homes (see Table 3, along with
Appendix C) and in each context recorded a smaller version
of our database (3 hours total—first 15 minutes of the first
12 movies). Next we matched queries extracted from home
EMI (Panasonic-42-B) against the EMI signature database
collected in the lab (Panasonic-42-A) using the search system
which had the capacity to reject searches that did not produce
“clear winners” (as described previously). The results of this
analysis are shown in Figure 7.The hit rate for 15 minute
queries drops from 96% in the lab environment with no misses
to 92% in the home environment with a 2% miss rate.

9.5 Searching for Target Content
The above results show that our small collection of 20

movies yield distinguishable EMI when displayed on modern
TVs; this emulates the target channel identification adver-
sarial goal in Section 4. We now turn to experimentally
emulating a target video identification attack scenario (recall
again Section 4). Under this scenario, a person might be
watching arbitrary TV content, and the attacker wishes to

Figure 8: Cross correlation for target (green) movies
embedded in broadcast content (blue).

Figure 9: Matching results for Panasonic-42-A EMI
queries against neural network database.

determine whether that content corresponds to some target
(e.g., censored, banned, sensitive) content. To explore this
adversarial goal, we recorded 20 hours of EMI while the TV
was tuned to over-the-air HD television broadcast.

Figure 8 shows the results of running our matching frame-
work on EMI from one hour long chunks of over the air broad-
cast interleaved with one hour movies (the targets) from our
database. Given a query length of 6 or more minutes the over
the air cable data never returned a match because matches
could not pass the confidence threshold. Conversely, the con-
tent embedded from our “sensitive” database had a rejection
rate of 3.3% and a hit rate of 95.06%. This demonstrates
that target videos were clearly detectable when intermingled
with non-target videos.

10. EXTENSION: MODELS OF EMI
The results in the previous sections motivated us to ask

the following question: can we reverse engineer the method
by which a TV produces EMI as a function of its video input?
Such a tool could be used to build a database of EMI models
to predict noise signatures without needing physical access
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to target devices (after the training phase). It would also be
plausible to learn to recreate EMI from a home TV without
ever seeing a TV of that type, provided that there are samples
of data from periods during which the TV displays known
content (e.g., if the user is watching one of five news channels
in the morning, the system could build a model for the TV
to try and detect whether the user is watching some specific
show later).

We investigate the plausibility of learning a model to recre-
ate the EMI of one TV (Panasonic-42-A) by framing the
problem as an instance of supervised learning, where the
goal is to approximate how the various hardware components
of the device (taken together as a black box) modulate the
SMPS and produce EMI from video input. To tackle this
problem we chose to use recurrent neural networks (RNN)
because the EMI we are seeking to replicate is a continuous
time signal which exhibits non-stationarity (i.e., the current
state of the EMI depends on the past several samples) hence
ruling out the possibility of using popular stationary methods
for supervised learning (i.e., Support Vector Machines). A
further motivation to use RNNs comes from their ability to
accommodate for non-linear interactions between the input
and output which we could not rule out from the processes
that shape electromagnetic interference.

Features from Video Frames. The input to our model,
is a sequence of video frames arriving at a rate of 30FPS
(NTSC) with typical DVD resolution of 720 x 480 pixels.
In its raw form the input dimensionality at each sample is
extremely high (3 x 720 x 480 per frame) and prohibitively
large for model training. Thus, we opted to compress each
video frame into a 11 element vector which extracts selected
features (meant to capture key statistics for each frame) from
the visual content and greatly reduce the complexity of the
learning problem. The features we compute from each frame
are listed below:

• Brightness: cumulative sum of averaged RGB inten-
sities (based on pixel values).

• Flux: change in brightness between consecutive frames.

• Edge Intensity: pixelsum of a Canny Edge filter.

• FFT: slope of the best fit line to an FFT.

• Color: mean and standard deviations for gaussians
fitted to R, G, and B color histograms (6 params).

• Bitrate: kbits/second computed using FFMPEG.

These features were post processed in a fashion very simi-
lar to the signal conditioning of the EMI. In particular, we
performed normalization (0 to 1 scale), smoothing (Butter-
worth filter with 10kHz cutoff frequency) and decimation (10
samples per second).

Network Structure. RNNs are a class of neural networks
in which intermediate layers (i.e., those separating input and
output) have connections to neighboring layers as well as
(re)connections to themselves; these properties lead to self
feedback (memory) which enable dynamic temporal behavior
[20]. At time t the network input layer consisted of a video
frame represented as a 11 element feature vector. The input
layer was connected to the first of 3 hidden layers (connected
in succession, each composed of 11 neurons to match the
dimensionality of the input) and the final hidden layer was

connected to a scalar output layer representing the normalized
time series EMI at time t.5

Training. The training phase began with randomly initial-
ized network parameters which were tuned using backpropa-
gation through time (BPTT) via the Levenberg-Marquardt
gradient method. The criterion for performance was how
well the network output matched test EMI (measured as
mean squared normalized error). Each training session con-
cluded when the optimization converged or after 50 epochs
(whichever came first).

Results. We used our neural network to generate a
database of synthetic EMI (i.e., given only video data) and
performed matching searches using real TV EMI traces as
queries. Prior to defining our training and target sets, we sys-
tematically removed the five movies with the globally lowest
self similarity measures across all TVs (Wedding Crashers,
The Hangover, Meet the Parents, Office Space, Top Gear).
This eliminates noise artifacts during training and approxi-
mates the goal of only plausibly detecting target videos with
high self similarity.

The remaining 15 movies were divided into random sets of
10 training movies and 5 target movies, and for each train-
ing/target combination we evaluated matching performance
using our thresholding method (Section 9.3) which rejected
queries unless there was a .05 gap in the cross-correlation
of the best candidate match and the runner up. For each
combination of training and target movie sets we computed
matching using a database of neural network EMI (generated
for the 5 target movies) and queried using real TV EMI (from
10 test movies—the 5 target movies with generated EMI
via the neural network and the 5 movies originally excluded
due to low self similarity). The average cross correlation
of the neural network output and the ground truth EMI of
the Panasonic-42-A for the 5 target movies was .88 (for a
query length of 60 minutes). Figure 9 shows the results of
submitting real EMI for the 5 target movies into our query
matching system (the hit rate at 60 minutes is .74, lower than
.88, because of the .05 threshold gap). Figure 10 visually
shows the alignment between the generated EMI for a target
movie and real EMI for that movie. The matching database
correctly rejected EMI from the five movies originally ex-
cluded because of low self similarity with average probability
96.8 (averaged across query lengths longer than 15 minutes).
Using brightness as an isolated input to train a network

generates signals that are .73 correlated with real EMI for
the target movies (other features produce an average of .17
correlation). In future work it would be worthwhile to use
hypothesis driven regression models to strengthen our under-
standing of generative EMI sources, however such analysis
will require careful experimentation with secondary sources
of EMI signal modulation (e.g., display processing circuitry)
â as suggested by our results and confirmed by [18].
It is important to stress that the above analysis should

only be viewed as evidence of plausibility—the primary
focus of our work is on the experimental analysis of real EMI
as discussed in the previous sections. Our results here do,
however, suggest that it is feasible to use supervised methods
to train generative models of EMI.

5Though we cannot claim that this network structure is
globally optimal for our problem, it offered high performance
and low overfitting after experimenting with a large set of
multi-layered neuron arrangements.
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Figure 10: Neural network predictions (driven via
visual features) vs. actual EMI of a 60 minute movie
not included in the training set (Bourne Ultima-
tum).

11. DISCUSSION
Applicability to Other Devices. To better understand
the scope of information leakage exposed via conducted EMI
from SMPS, we executed a survey of other common home
electronics: a personal computer, a laptop, a laser printer, a
DVD player, a game console, and a washing machine. Our
aim was to assess whether these SMPS-based appliances sim-
ilarly produce noise signatures as a function of their device
operation. Recall that past work on conducted EMI infor-
mation leakage, such as works focused on keyboards [3, 28],
observed EMI that was a direct function of electrical signals—
bits—already communicated within the device in question;
SMPS were not designed to carry digital signals, yet we ob-
served that many appliances do yield EMI signal fluctuations
that are correlated with the various functions supported by
the device in question.
We found that the laser printer generated increased elec-

tromagnetic interference while warming up and during the
printing process that engages the motors. In the case of the
personal computer and laptop, we observed increases in EMI
amplitude while running a collection of intensive CPU/mem-
ory/disk benchmarks. The DVD player’s (with internal FM
Radio) EMI was affected by volume changes, and the game
console produced different EMI signals depending on whether
it was in the main menu or in the process of rendering a
game. The washer produced EMI bursts whenever the barrel
rotated during the wash cycle.

Defenses and Challenges. There are several potential
countermeasures for minimizing information leakage through
EMI. One simple defense mechanism is to connect SMPS
based devices to a powerline isolator similar to the one used
in our laboratory experiments. The internal transformer
provides enough isolation such that the high frequency noise
does not pass back over the powerline (assuming the isolator
itself has not been compromised). This capability is found
in some newer line conditioners and in some instances of
uninterruptible power supplies (UPSs).
A potential whole home solution, which does not require

installing a device behind every electronic appliance, would
be to inject random high-energy broadband noise over the
powerline. In addition to traditional challenges with random-
ness, a key pragmatic challenge with this approach is that it

must conform to FCC regulations. In addition, this would
cause problems with legitimate powerline-based communica-
tion systems like broadband over powerline and X10(r) home
automated systems. A more practical approach could be to
identify potential devices that may be leaking information by
observing the power line and only blocking certain frequency
bands using an active noise rejection system or informing the
home owner where to install line isolators.

It might be tempting to fall back on an out-of-band solution
and ask for new regulation on how SMPS power supplies are
built. In addition the political challenges with such a solution,
this approach is also faced with the following tension: it
may be impossible to fully defend against such information
disclosure while still being in compliance with Energy STAR.
Said another way, existing regulation within the U.S. may
make it difficult or infeasible to implement defenses since
the costs of privacy (increased consumption and decreased
efficiency) are in direct conflict with recent legislation. This
creates a fundamental challenge: to develop systems that are
both highly energy efficient and private.
Through this contribution we assess the key features of

SMPS information leakage over the powerline, and provide
a knowledge base to aid in future efforts for mitigating the
tension between device functionality and privacy.

12. CONCLUSIONS
We conducted an extensive study of powerline information

leakage from eight modern TVs spanning two technologies
(LCD, Plasma), three sizes (32′′, 42′′, 58′′), and three manu-
facturers (Panasonic, Samsung, Sharp). We find that these
TVs generally produce stable, robust EMI signals on the
powerline that correlate with the video being displayed. We
discuss two adversarial goals that do not require an adversary
to pre-train on the set of all possible movies, but rather train
on a small set of video content/movies (e.g., to infer whether
a person is watching a target, sensitive video or whether a per-
son is watching a target, sensitive channel), and we describe
two different classes of adversaries (intentional adversaries
that might attach malicious hardware to a home’s powerline
and unintentional adversaries—e.g., ubicomp devices— that
might unwittingly collect and storing privacy-compromising
measurements from the home’s powerline). Next, we exper-
imentally evaluate our approach with 20 movies in both a
clean laboratory setting and electrically noisy home environ-
ments with other active devices connected to the powerline.
Subsequently, we describe extensions to our core work that
allow an attacker to infer information from a home’s TV’s
EMI without ever requiring access to that TV or another
TV of the same model (by dynamically learning a model
of the TV’s EMI signatures as a function of known video
content). Lastly, we close with a discussion of some defenses,
as well as fundamental challenges to fully defending against
this threat (e.g., complete defenses may be in violation of
Energy STAR).
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APPENDIX
A. TWO EMI TYPES
EMI signal fluctuations can be manifested as frequency

shifts or variations in energy density. The following figure
shows examples of these two types of EMI signals.

The Sharp-42 TV is shown on the left; changes in screen
content cause a shift in the center frequency of the EMI. The
white strip on left shows the signal obtained by tracking the
EMI on left. The Panasonic-42-A TV is shown on the right;
changes on screen manifest as change in the Energy density
of the EMI. Tracking total energy over time yields the signal
shown in white strip on the right.

B. REDUCING FALSE MATCHES USING A
CONFIDENCE THRESHOLD

The following figure shows average hit rates (solid lines)
and reject rates (dashed lines) as a function of threshold
setting for confidence gap between the top match and the
runner-up for 6 minute queries. The blue lines represent the
average hit and reject rates for the 6 TVs (excluding the
Sharp 32” A&B); and the red lines depict the average hit
and reject rates for the Sharp 32” A&B. Note that the Sharp
TVs produce significantly higher reject rates because they
produce signals that are not good at discriminating between
movies.

To clarify this figure, note that hit rate is not 1 minus
the reject rate. Rather, the accept rate (not shown) is 1
minus the reject rate. The hit rate is the number of correct
matches divided by the number of queries not rejected. The
reject rate gets higher as we require a larger gap between the
winner and the runner up. The accept rate (not shown) will
simultaneously decrease. However, the hit rate (shown) does
increase with larger threshold values. For our experiments
we select a threshold of .05, which yields a hit rate.

C. HOME EMI
The following figure shows EMI recorded from Home 3.

Note that multiple devices were in operation at any given time,
and despite signal overlaps our EMI extraction algorithm
was able to successfully track the TV noise signature.

550




