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ABSTRACT 

Smartphones and tablets are often used in dynamic 

environments that force users to break focus and attend to 

their surroundings, creating a form of “situational 

impairment.” Current mobile devices have no ability to 

sense when users divert or restore their attention, let alone 

provide support for resuming tasks. We therefore introduce 

SwitchBack, a system that allows mobile device users to 

resume tasks more efficiently. SwitchBack is built upon 

Focus and Saccade Tracking (FAST), which uses the front-

facing camera to determine when the user is looking and 

how their eyes are moving across the screen. In a controlled 

study, we found that FAST can identify how many lines the 

user has read in a body of text within a mean absolute 

percent error of just 3.9%. We then tested SwitchBack in a 

dual focus-of-attention task, finding that SwitchBack 

improved average reading speed by 7.7% in the presence of 

distractions. 
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INTRODUCTION 

Mobile computing devices such as smartphones and tablets 

are now some of the most common devices in our 

environment. The ubiquity of mobile devices allows users 

to consume information everywhere. Although these 

devices are being used in a variety of environments, they do 

not have any significant awareness of the differences 

among environments or how these differences affect their 

users’ behaviors. When users are negatively impacted in 

their ability to interact with technology by environmental 

conditions, they can be said to be situationally impaired 

[31]. Situational impairments may be caused by a number 

of factors, such as motion, temperature, ambient noise, etc. 

One of the most significant contextual factors that affects 

people’s mobile device usage is divided attention. For 

example, if pedestrians are checking email on their 

smartphones while walking across the street, they must 

break their attention from their devices to maintain 

awareness of their surroundings, or else they put themselves 

at risk of physical injury. Studies have shown that mobile 

phone related injuries among pedestrians doubled between 

2005 and 2010, reaching almost 4% of all pedestrian 

accidents [27]. Some cities have even begun issuing tickets 

to pedestrians who are caught texting while walking [28]. 

Although safety is of the utmost concern when it comes to 

situational impairments, damage to users’ productivity is 

also a concern. In the aforementioned scenario, it is likely 

that when pedestrians return their attention to their mobile 

devices, they will have lost track of their progress. Context-

switching incurs a startup cost that can accumulate to the 

point where users’ comprehension is negatively affected 

[25].  

To address these concerns, we present SwitchBack (Figure 

1), a system that uses the camera on a mobile device to 

determine when the user is unable to pay visual attention to 

the device, pause the task (if applicable), and then help the 

user to efficiently resume the task when the user returns his 

or her gaze to the device. SwitchBack is built upon our 

Figure 1. SwitchBack highlights where the user was last looking in a 
body of text before he or she turned away to handle a distraction. 
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underlying camera-based attention-tracking algorithm 

called Focus and Saccade Tracking (FAST), which, through 

the front-facing camera, approximates when and how the 

user is looking at the screen, even if users are wearing 

corrective lenses or glasses.  

A high-level description of FAST is as follows. FAST first 

determines whether or not the user is looking at the screen. 

If the user is looking, FAST measures the movement of the 

user’s pupil relative to the rest of the eye to track where the 

user is looking on the screen. In cases when the screen is 

displaying text (e.g., emails or web articles), FAST detects 

quick, horizontal jumps. These gaze jumps, or saccades, are 

used as a proxy to determine when the user moves to a new 

line and to estimate where the user is in a body of text. 

FAST continually audits its estimate by checking whether 

the user’s observed reading speed is within the expected 

range (200 – 400 wpm [16]).  

Once SwitchBack detects that the user has returned from a 

distraction by looking back at the screen, it guides the user 

back to where he or she last left off by highlighting the 

appropriate region of text. FAST can also be used to enable 

automatic scrolling when the user reaches the end of the 

text visible on the screen. This capability can prove very 

helpful in a number of situations, for example, when a user 

has gloves on and the capacitive touchscreen will not work. 

We evaluated FAST to quantify its performance for 

attention and saccade tracking, and for supporting reading 

task resumption. By incorporating information about the 

user’s reading speed, FAST is able to estimate how many 

lines the user has read in a body of text within a mean 

absolute percent error of just 3.9%. We evaluated the 

effectiveness of SwitchBack in helping the user complete 

their mobile tasks in the presence of external distractions. In 

a controlled user study, participants, while experiencing 

distractions, improved their average reading speed during a 

reading task by 7.7% (roughly 19 words per minute) when 

using SwitchBack compared to the control condition.  

The main contribution of this paper is to demonstrate that 

SwitchBack can be used in reading applications to facilitate 

the user resuming the reading of a body of text after 

attending to an outside distraction. This contribution comes 

in three parts: (1) the FAST algorithm for detecting when 

and where the user is looking at the screen using the camera 

found on commodity mobile phones and without the need 

for any additional illumination hardware; (2) the ability of 

FAST to track a user’s reading pattern and guide them to 

the most recently read line of text when they return from 

another task; and (3) an evaluation of SwitchBack showing 

that it improves reading speed in situations of divided 

attention. 

RELATED WORK 

SwitchBack uses FAST to detect when and how the user is 

looking at the screen. FAST is related to, and can leverage, 

any sort of gaze tracking technique. Since SwitchBack is 

intended to help users with their mobile devices, we also 

discuss prior research regarding attention tracking for 

interface interactions. 

Gaze-Tracking Technologies and Techniques 

The most similar work to SwitchBack is EyePhone [24], a 

hands-free interfacing system intended for mobile 

applications that are used while the user is driving a 

vehicle. EyePhone uses the front-facing camera of a 

smartphone to monitor the user’s gaze on the screen. Rather 

than tracking relative changes in the user’s gaze, however, 

EyePhone monitors the absolute position of the user’s gaze 

to make selections on the screen. While absolute position 

provides more information about the user’s attention, gaze-

tracking accuracy quickly degrades as the phone moves 

further away from the user’s face (<20% accuracy for 

button selection at ~45 cm). By comparison, our use of 

relative changes can be easily extracted from the noisy eye-

tracking signal, particularly the large ones that occur as the 

user’s eyes travel from one side of the screen to the other. 

We will demonstrate how relative tracking results in a 

robust system suitable to use in motion. 

Thorough reviews of gaze-tracking have been written by 

Hansen and Ji [12] and Morimoto and Mimica [26]. We 

briefly highlight a few innovations and direct readers to 

their surveys for more detail. Active gaze-tracking systems 

typically use infrared (IR) light because of the glint that 

appears when IR light is reflected off of the boundary of the 

lens and the cornea. Off-the-shelf devices
1,2

 and wearable 

sensors integrated with eyeglasses [35] are normally used to 

shine IR light onto the user’s face. From there, either Pupil 

Center Corneal Reflection [11] or machine learning [2] is 

used to learn resulting gaze coordinates. Passive gaze-

tracking systems do not rely on any extra hardware, but 

rather process video and images from the camera using 

computer vision techniques. Machine learning methods like 

neural networks [33] have been used to develop a mapping 

from high dimensional image data in pixel space to low 

dimensional data in gaze-coordinate space.  

Beyond EyePhone, gaze-tracking has not been heavily 

investigated in mobile computing. Drewes et al. [6] devised 

gaze-based gestures for a mobile device, but utilized an 

external IR tracker. Commercial entities have perhaps 

advanced development most. Companies like the Eye 

Tribe
2
 sell active IR-based eye-trackers that are small 

enough to be mobile device accessories. Samsung gives the 

appearance of gaze-tracking through their Smart Scroll and 

Smart Pause features, but these systems actually monitor 

the orientation of the user’s face. Recently, Qualcomm
3
 has 

integrated a passive method of gaze-tracking in the facial 

processing SDK included on their Snapdragon processor. 

                                                           

1 http://www.tobii.com/ 
2 https://theeyetribe.com/ 
3 https://developer.qualcomm.com/mobile-development/add-

advanced-features/snapdragon-sdk-android 



FAST uses this Qualcomm library for gaze feature 

extraction. 

Attention and Interface Interaction 

The design of SwitchBack’s task-resumption feedback 

draws inspiration from Phosphor [4], a system that 

modified user interfaces on desktops to highlight changes in 

widget settings that users may otherwise miss. Similar 

techniques have been used to draw attention [23] and 

migrate users between different interface layouts [3]. 

SwitchBack shows similar transitions when users resume 

tasks on their mobile devices. Unlike SwitchBack, none of 

these techniques is aware of users’ attention. 

Visual fixations have been interpreted as both a 

measurement of interest and uncertainty [15,16]. Saccades 

have been used to reveal marked shifts in behavior [9,10]. 

Scanpaths, or sequences of saccades and fixations, describe 

how a user searches through an interface [1,10]. Goldberg 

and Kotval [9] showed that deviation from a normal 

scanning behavior indicates poor user training or bad layout 

design. Blink rate [5] and pupil size [22,29] have been used 

as an indexes of cognitive workload, but may be affected by 

outside factors like ambient light. 

Just and Carpenter [16] monitored the eye fixations of users 

as they read scientific passages. Their main discovery was 

that readers make longer pauses when processing loads are 

greater (e.g., longer words, confusing phrases). They also 

showed that people read in a saccadic, sequential manner.  

We use this latter fact to design the reading algorithm 

underlying our system.  

The motivation behind SwitchBack follows closely with 

that of the work demonstrated in Gazemarks. Kern et al. 

[18] observed that people manage multitasking search 

situations by using placeholders like fingers or pens. 

Gazemarks tracks the user’s gaze using an off-the-shelf 

gaze-tracker and provides digital placeholders, in the form 

of shadowed circles, to guide the user’s attention when they 

switch tasks. We differ from Gazemarks in two ways: (1) 

We observe that relative gaze changes (i.e., saccades) are 

better suited for monitoring attention on mobile devices 

than absolute gaze coordinates. Gazemarks was developed 

for desktops, which presume a stable environment with 

large screens and off-the-shelf eye-trackers, thus allowing 

them to use absolute gaze coordinates to track attention. (2) 

To motivate our FAST technique, we designed the 

SwitchBack application. While our interface modification is 

similar to the one applied in Gazemarks, reading is a use 

case that Kern et al. only briefly mention, but never 

develop. 

THE DESIGN OF SWITCHBACK 

SwitchBack is built upon our FAST algorithm (Figure 2), 

which has two major components. The first is focus 

tracking, which determines whether or not the user is facing 

the screen. The second is saccade tracking, which observes 

the position of the user’s pupil relative to the rest of their 

eye to determine how the user’s gaze changes over time. 

We combine these components within SwitchBack and 

apply highlighting to aid task resumption.  

Focus and Saccade Tracking (FAST) 
Focus Tracking 

FAST takes frames from the front-facing camera and passes 

them through the Qualcomm Snapdragon SDK for 

processing. The SDK detects faces and the orientation of 

those faces. Both face detection and face orientation are 

useful for focus tracking. If a face is not detected on the 

screen, there is no way for the user’s eyes to be tracked and 

the user is probably not attending to the screen (Figure 3b). 

Even if the user’s face is in the view of the camera, the user 

may not be attending to the screen. In this case, we set 

bounds on the yaw (i.e., side-to-side angle) of the face 

according to the typical angle formed between the distance 

from the user’s face to the center of the screen and the 

 

Figure 2. The FAST algorithm. (1) The user’s face and eyes are detected in order to establish whether the user is focused on the screen 
or not. If the user is facing the screen, (2) the pupils are identified and compared relative to the bounding box of the eye to (3) identify the 
user’s gaze in the horizontal and vertical directions. (4) These measurements are applied through low-pass filtering and (5) peak 
detection to identify saccades. 
 

Figure 3. (a) If the user is looking at the screen, his face and eyes 
are detected. (b) When the user begins to look away, his face is 
either no longer detected or has turned too much for him to be 
focused on the screen. 



distance from the user’s face to the outside edge of the 

screen. If the user turns his face past these bounds, we infer 

that the user’s attention is directed elsewhere.  

Even when the user is facing the screen, face detection may 

briefly fail due to transient lighting conditions or occlusion 

by hands. To prevent false triggers indicating that the user 

has turned away, FAST maintains a sliding window of 2 

seconds (overlap of 1/16 fps = 62.5 ms). It only infers that 

the user’s attention has left the screen when the face is not 

detected for a window’s duration. Any distractions shorter 

than that duration are so brief that the user likely will have 

not lost their focus from their previous task. As soon as the 

user is facing the screen again, FAST infers that his 

attention is back on the screen. 

Saccade Tracking 

Once SwitchBack detects that the user is looking at the 

screen, the system tries to detect saccades, or fast eye 

movements. In cases where the user is reading something 

on their screen, saccades can be used to estimate the 

number of lines that the user has read. To detect saccades, 

SwitchBack tries to detect the user’s pupil by finding the 

darkest portion of his eye. 

With the face, eyes, and pupil detected, gaze direction can 

be quantified using the same geometrical observations that 

have inspired gaze tracking technology in the past 

[6,12,26]. Figure 4 shows that the center of the pupil shifts 

depending on where the user is looking at the screen; we 

use this fact to form horizontal and vertical features that 

encode the position of each pupil within their respective 

eyes. Feature values range from 0 to 1, with 0.5 meaning 

that the eye is in the exact center along a specific 

dimension. The features are passed through a first-order 

infinite impulse response (IIR) filter with a cutoff frequency 

of roughly 2.5 Hz; this is a low-complexity low-pass filter 

that suppresses high-frequency noise in time series 

measurements.  

Gaze coordinates on the screen can be inferred either 

through calibration or knowing the position of the user’s 

head in the camera’s field of view. EyePhone [24] divides 

the bounding box around the user’s eye and the screen into 

a grid and uses a one-to-one grid cell mapping to associate 

pupil locations to targets on the phone. For our purposes, 

we do not need to know exactly where the user is looking 

on the screen. Instead, we are only interested in drastic gaze 

changes, implying that a saccade has occurred. 

Figure 5 plots the estimated horizontal location of a user’s 

pupil with respect to time as the user moves their eyes, 

pauses for a few seconds, and then continues to move their 

eyes. Low magnitude values correspond to when the user is 

looking to the right, whereas higher magnitude values 

correspond to looking left. The signal jumps whenever the 

user’s gaze changes drastically and a saccade occurs. FAST 

detects these movements in real-time by looking for local 

optima within a window. Note that saccade detection is 

agnostic to the amplitude of the signal, so such a system can 

be prone to noise appearing in flat signals. To prevent this 

from affecting FAST’s line prediction, a detected optimum 

is only counted as a saccade if the gaze location changes 

significantly afterwards. The threshold for determining 

significant changes was determined empirically by iterating 

through different values and optimizing the results from the 

data collected in our technology evaluation. In Figure 5, the 

local optima marked with circles are considered saccades 

by the algorithm, while the crosses mark some of the local 

optima that are rejected by the algorithm because the signal 

exhibits less deviation during those times. 

FAST in the Context of Reading 

While reading English prose, right-to-left saccades indicate 

when users begin to read a new line (Figure 5). Between 

saccades, users’ gaze exhibits sawtooth-like behavior as 

their gaze gradually sweeps across the screen. 

Despite the filtering described earlier, there are still cases 

where noise in the signal and sporadic glances may be 

inferred as saccades but not necessarily correspond to actual 

saccades when the user looks at a new line. False positives 

like these would advance the estimate of the user’s most 

recently read line too far. If face and eye detection fail for a 

brief period of time, it is also possible that saccades will be 

missed. False negatives cause the estimate of the user’s 

reading position to lag behind. If there is no mechanism for 

correction, the errors can accumulate over time and cause 

frustrating results for the user. 

To remedy this issue, we take advantage of the fact that we 

know the arrangement of the text within the application. In 

Figure 4. The position of the pupil relative to the rest of the eye 

changes as the user looks from (a) the top left to (b) the bottom. 

Figure 5. Peaks and troughs are detected throughout the signal, 
but only indicate saccades when the amplitude of the signal is 
large. Low magnitude values correspond to when the user is 
looking to the right, whereas higher magnitude values correspond to 
looking left. 

 



other words, we know how many words
4
 appear in each 

line. Combining this with knowledge about typical human 

reading speeds (200-400 words per minute [16]), FAST can 

predict how long it expects a user to read the next line of 

text, comparing that expected range, <tmin, tmax> with the 

measured interval between saccades, tmeasured. There are 

three possibilities: 

1. tmin < tmeasured < tmax: The measured interval falls 

within the expected range, so we accept the 

saccade as a proxy for a new line and increment 

the line estimate accordingly.  

2. tmeasured < tmin: The measured interval falls short of 

the expected range, so we infer that not enough 

time has passed between line breaks, label that 

saccade as a false positive, and do nothing to the 

line estimate.  

3. tmeasured > tmax:  The measured interval was longer 

than expected, so at least one saccade was likely 

missed. This means that the user read more text 

than what appears on the current line. We look 

ahead in the text, increment the line count, and 

update tmin and tmax until the expected range 

surrounds tmeasured. 

If the user looks away, pauses, or backtracks slightly while 

reading a line, tmeasured will overestimate the time it takes for 

the user to read the line. These moments can be segmented 

out of the time-varying signal, as shown in Figure 5, 

because they do not share the same sawtooth-like behavior 

as the reading moments. Therefore, tmeasured is only 

calculated using segments when the signal has the 

sawtooth-like behavior and the user is reading.  

There are a couple of further considerations that should be 

taken into account when incrementing the line count. First, 

the current line for the user must lie within the screen; e.g., 

if the first five lines of an article appear on a page, there is 

no way that the user is reading the sixth line. We use this 

fact to correct SwitchBack’s estimate when the error 

becomes very large. Another important consideration to 

make about the text is line length. In Figure 6, for example, 

a user was able to jump directly to the third line after she 

read the first. This is caused by the fact that the user was 

able to read the second line during the right-to-left saccade 

(marked by the red arrow in Figure 6). We handle cases like 

this by ignoring lines that span less than a third of the 

screen (including line breaks) in the aforementioned 

calculations.  

Technology Evaluation of FAST 

Prior to conducting our primary user evaluation of 

SwitchBack, we conducted a technology evaluation to 

inform our design and quantify the accuracy of FAST. We 

                                                           

4 We use “word” to mean a group of five characters, consistent 

with terminology used in text analysis. 

collected reading data from 8 participants (5 males, 3 

females), each of whom volunteered for a 20-minute 

session. Two of the participants wore glasses during the 

experiment. 

We collected data using our custom reading application 

(Figure 1) on a Sony Xperia Z smartphone, which has a 5-

inch screen, 1080×1920 pixel display, and 2.3 MP front-

facing camera. Participants were asked to hold the 

smartphone in landscape mode while reading 6 different 

excerpts of text from the New York Times with size 15 font 

(roughly 1.8 mm in height) and presented as a single 

contiguous paragraph. Each article was clipped to 20 lines 

in length so the user did not have to scroll. We chose to use 

contiguous text in this experiment to gather sufficient data 

to estimate the time it takes for the typical user’s eyes to 

travel across the width of the screen. The text was displayed 

on the screen with black text on a white background. 

Participants were asked to read 3 articles while standing 

and 3 articles while walking on a treadmill at a comfortable 

pace. The study was counterbalanced across conditions. 

The walking condition was added to evaluate how FAST 

performs in the presence of extraneous vibrations due to 

walking. Horizontal and vertical gaze angle were recorded 

by the application and processed offline using MATLAB.  

Line prediction error is defined as the difference between 

the number of lines in the excerpt and FAST’s line 

prediction. Our results show that FAST achieves a mean 

absolute prediction error of 0.8 (SD = 1.1) out of the 20 

lines of text per trial, translating to 3.9% error. We also 

found that most of the errors tended to be positive, 

indicating that FAST overestimated the user’s reading 

position slightly. 

To delve deeper into our results, a mixed-effects model 

analysis of variance was used to analyze the data, with 

fixed effects for Walking, Glasses, and Gender, and a 

random effect for Subject. (Random effects are appropriate 

when levels of a factor are not of specific interest, but 

represent a larger population about which inferences are 

meant to be drawn [7]. Mixed-effects models are also 

appropriate for handling repeated measures over the same 

subjects due to their ability to model covariance in the data 

[21].) 

We expected FAST to be more accurate while participants 

were standing than walking. Although FAST looks at 

relative, and not absolute, pupil position, we believed that 

the shaking of the front-facing camera caused by walking 

would still affect our performance. However, the average 

Figure 6. When there is spacing between lines, the user’s eyes 
can follow the arrow and still read the second line. 



lines-of-error while walking was 0.30 (SD = 0.92), and 

while standing was 0.29 (SD = 1.42), so there was no 

detectable difference (F(1,29.9) = 0.00, n.s.). 

We also expected FAST to perform worse for users who 

wore glasses because we believed that the computer vision 

component within FAST might perform poorly. The 

average error for people wearing glasses was 0.50 (SD = 

1.83), and the error for those not wearing glasses was 0.21 

(SD = 0.82), but that difference was also not statistically 

significant (F(1,4.1) = 0.52, n.s.). 

We did not expect any difference in performance across 

gender. The average error for males was 0.36 (SD = 1.32) 

and for females was 0.19 (SD = 0.98). This difference was 

not statistically significant (F(1,4.7) = 0.18, n.s.). 

SwitchBack Reading Application 

We developed a reading application to guide the user’s 

attention back to where they were last looking in a body of 

text after attending to an outside distraction (Figure 1). 

While users are reading, FAST keeps track of where they 

are looking using saccade tracking corrected with 

information about the text. FAST detects when users look 

away from the screen and saves the estimated line a user 

was last reading. Once a user turns her attention back to the 

screen, SwitchBack highlights the line that was saved, 

aiding task resumption.  

USER EVALUATION OF SWITCHBACK 

We conducted a user study for our SwitchBack reading 

application with the intent of demonstrating that 

SwitchBack allows users to more easily resume reading on 

mobile devices after looking away due to distraction. 

Participants 

Seventeen participants (9 male, 8 female) ranging from 19 

to 52 years old (M = 26.7, SD = 7.2) were recruited for our 

study. The participants were evenly distributed between 

Caucasian, Asian, and South-Asian races. Five participants 

wore glasses during the study, and all but two of the 

participants owned and used a smartphone on a daily basis. 

Apparatus 

Participants used our custom application on a Sony Xperia 

Z smartphone with a 5-inch capacitive touch screen, 

1080×1920 pixel display, and 2.3 MP front-facing camera. 

The reading application was the same as the one developed 

for the FAST evaluation study. The only difference was that 

SwitchBack would be enabled in one condition. When 

active, SwitchBack guided the user’s focus of attention by 

highlighting a line of text, as shown on the right side of 

Figure 1. The text was highlighted whenever the user turned 

away from the screen and then disappeared 5 seconds after 

they returned to the application. Eight New York Times 

articles between 500 and 600 words  (M = 522, SD = 18) 

were chosen for the study; their average readability score 

was 46.3 according to the Flesch Reading Ease test [19]. A 

diffused light source subtly illuminated the experiment area, 

ensuring consistent lighting conditions for all participants; 

special care was exercised to ensure that the lighting would 

not affect participants’ reading ability.   

To study the effect of SwitchBack in the presence of 

distractions, we devised a secondary distraction task and 

introduced it as a condition. The task was adapted from an 

attentionally-demanding task used by Yokoyama et al. [36]. 

The software for the task was written in C++ and ran on a 

Windows desktop with two monitors placed on either side 

of the user (Figure 7). Both screens began completely 

black. Every 25-40 seconds, one of the two screens played a 

tone to direct the user’s attention away from the phone. The 

screen then displayed a combination of T’s and L’s (always 

9 in total) with white text and at different orientations 

(Figure 8). Time intervals, screen selection, letter rotations, 

and letter selections were all randomized to simulate 

unexpected distractions and prevent anticipation.  

To simulate a natural setting where users might face 

distractions, participants were asked to walk on a treadmill 

(Figure 7) for a portion of the experiments. The treadmill 

was set to a speed of about 1.4 m/s. 

Procedure 

The procedure was designed to fit in a single 45-minute 

session. Each session began with a pre-study questionnaire 

about the participant’s mobile device experience and habits. 

Once completed, participants were introduced to the 

experimental setup and asked to familiarize themselves 

with the application. We also informed participants that 

they would be tested for reading comprehension through a 

Figure 7. To support the different conditions, the experimental 
setup included a treadmill for walking, a lamp for consistent 
lighting, and a monitor on either side for distractions. 

Figure 8. The distraction task required participants to distinguish 
between rotated T’s and L’s within a fixed amount of time. 



four question multiple choice test at the end of each trial. 

Participants read a different article per trial to avoid 

familiarization with the text or encouraging them to skim. 

The order of the articles was randomized using Latin 

Squares to ensure that specific articles did not impose a bias 

on a particular set of conditions.  

At the beginning of each trial, the experimenter ensured that 

the participant began reading with their face within the 

front-facing camera’s field of view when the phone was 

held in landscape mode. Participants were asked to read 

each article in its entirety and to scroll whenever they 

desired. When the distraction task was active, participants 

were asked to verbally report either the number of T’s or 

L’s to the experimenter whenever letters appeared on one of 

the two outside monitors before returning to the reading; 

since the number of letters on the screen remained constant, 

we allowed participants to report the number of either letter. 

On average, participants experienced 4.4 distractions per 

trial (SD = 1.7) when the distraction task was active.  

At the end of each trial, participants were asked to complete 

a short multiple choice test of reading comprehension and a 

NASA Task Load Index (TLX) questionnaire [13] to 

provide feedback concerning their experience. 

Design & Analysis 

The study was a within-subjects 2×2×2 factorial design. 

The factors and levels were:  

 Posture: Sitting and Walking. 

 Distraction: Distraction and No Distraction. 

 Interface: SwitchBack and Control. 

Posture was the first factor that was counterbalanced. 

Within each posture, Distraction was counterbalanced, 

followed by Interface. Each participant completed every 

unique combination of conditions, leading to 17×2×2×2 = 

136 total trials for the study.  

Average reading speed, measured in words per minute 

(WPM), was the main measure for assessing SwitchBack’s 

performance. To calculate reading speed, we divided the 

total number of characters in the text read by the time the 

user spent reading and divide that by 5, the standard for 

characters per word used in text analysis. Our calculation 

excludes the time spent completing the distraction task, 

when applicable.  

A mixed-effects model analysis of variance was used to 

analyze our data, with fixed effects for Distraction, 

Posture, and Interface, and random effects for Article and 

Subject [7,21]. Overall, reading speed was normally 

distributed according to a nonsignificant Shapiro-Wilk W-

test (W = 0.989, p = .383) [32]. 

Being ordinal in nature, Likert ratings (1-20) for the NASA 

TLX instrument were analyzed using the nonparametric 

Aligned Rank Transform procedure [14,30]. This procedure 

allows for an analysis of variance (ANOVA) to be used to 

test for main and interaction effects after aligning and 

ranking the data separately for each effect. Despite using 

analysis of variance, the procedure is considered 

nonparametric due to its ranking preprocessing step. The 

ARTool by Wobbrock et al. [34] was used to prepare the 

data for analysis using the Aligned Rank Transform 

procedure. Each of the 17 subjects filled out the 6 NASA 

TLX workload scales (1-20) after each of 8 articles, 

resulting in 17×6×8 = 816 individual ratings. 

RESULTS 

Reading Speed 
Reading speed results are shown in Figure 9. Across all 

trials, the average reading speed was 252.0 WPM. This rate 

is near the lowest quarter of the expected range for typical 

reading rates, 200 – 400 WPM [16], which we believe can 

be attributed to the fact that users were asked to read for 

comprehension, rather than speed. 

We looked at the Interface × Distraction interaction to 

evaluate the performance of our system. We found this 

interaction to have only a marginal effect on reading speed 

(F(1,105) = 2.93, p = .09). Without our distraction task, 

SwitchBack never has to modify the interface, so we dug 

deeper into this trend by looking at the effect of 

SwitchBack just in the presence of distractions. As we 

expected, a pairwise comparison shows that SwitchBack 

significantly increased reading speeds (F(1,107.8) = 4.61, p < 

.05) in those cases. This translated to an extra +19.0 WPM 

increase in users’ reading speed when SwitchBack was used 

in the presence of distractions, a +7.7% increase from the 

average reading speed across all users. Although the 

interaction was only a trend, prior work has convincingly 

argued for the appropriateness of doing post hoc 

comparisons on trend-level interactions [8]. 

We also gathered findings that confirmed that our 

experimental treatments did indeed increase workload, as 

intended. The Distraction × Posture interaction had a 

marginal effect on reading speed (F(1,110.6) = 2.83, p = .09), 

 

Figure 9. SwitchBack resulted in 19.0 WPM (7.7%) faster reading 
speeds than the control condition in the presence of distractions. 
Error bars show standard deviations. 
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and in the presence of distractions, walking lowered reading 

speeds (F(1,111.7) = 4.01, p < .05). 

NASA TLX Questionnaire 

It was our hope that through our NASA TLX 

questionnaires, we would demonstrate that SwitchBack 

generally decreased perceived workload. While we were 

not able to detect any significant differences, we found that 

SwitchBack marginally lessened the mental demand 

experienced by our users (F(1,112) = 3.25, p = .07). This 

finding corroborates the findings concerning improvement 

in average reading speed; that is, reading speed should 

increase if mental demand decreases since the user is 

allowed to focus more on reading. 

The NASA TLX questionnaires were more revealing about 

the effects of our dual focus-of-attention study design. For 

example, both walking (F(1,112) = 21.56, p < .0001) and the 

distraction tasks (F(1,112) = 21.09, p < .0001) significantly 

increased frustration for users. Similar trends can be 

observed across all the other aspects of the survey: mental 

demand, physical demand, temporal demand, 

success/failure, and effort. 

DISCUSSION 

Our goal was to develop a system that eases the user back 

into a task on their mobile device. To demonstrate this, we 

developed a SwitchBack reading application that identifies 

the user’s reading pattern through gaze tracking and guides 

the user back to the proper location in the text after turning 

away. SwitchBack’s FAST algorithm was able to identify 

the appropriate line to highlight with a mean absolute 

percent error of 3.9%. In an evaluation of SwitchBack’s 

effect on performance during a reading task with 

distractions, SwitchBack improved average reading speeds 

by 7.7% in the presence of distractions. 

We focused on smartphones for our user study because 

smartphones are currently one of the most pervasive 

devices in the world and we wanted to explore the 

constraints of working with small screens. SwitchBack is 

even better suited for devices like the Amazon Kindle, 

which are made specifically for long-form reading. In fact, 

we are confident that FAST would have higher accuracy 

with such devices because larger screens create more 

smooth and noticeable saccades. By tackling the hardest set 

of conditions for validating FAST (i.e., a small screen and 

walking), we informally demonstrated that FAST would 

work on larger devices; doing the converse would not have 

been possible. 

While evaluating the performance of the FAST algorithm 

alone, we found that it performed sub-optimally in roughly 

15% of the trials. These can be attributed to two causes. 

The first cause was occlusion when the user unknowingly 

covered the camera with their thumb. We conducted our 

experiments in the device’s landscape orientation because 

the Snapdragon SDK did not have the accuracy to support 

the narrower portrait news article width. Future mobile 

devices with multiple front-facing cameras, like the 

Amazon Fire, may alleviate such issues. The second cause 

relates to situations when participants were unable to tell if 

their face was within the camera’s field of view while 

reading. We considered adding visual feedback to remedy 

this issue, similar to the approach taken by Samsung for 

their Smart Scroll feature [17]; however, we found this to 

be a distraction in itself that led to extraneous saccades. A 

wide-angle camera lens would alleviate the issue of the 

user’s face moving out of the camera frame in most cases. 

While testing SwitchBack’s reading application, we found 

that some of our users had already developed their own way 

to keep track of where they were in a large body of text. For 

instance, one participant told us that she scrolled so that the 

line she was reading was always at the top of the screen; of 

course, she could not rely on this once she had scrolled to 

the bottom of the page. Other participants stated that they 

kept track of where they were by remembering a key phrase 

in the article as a “mental bookmark,” despite our 

complicated distraction task. While such bookmarks should 

impose more cognitive load on the user and impair their 

ability to complete other tasks, a field study with 

ecologically valid distractions would be insightful towards 

examining more realistic cognitive load tradeoffs.  

Our use of FAST in the SwitchBack application ignores 

gaze position in the vertical direction because of its poor 

accuracy, which may be partially attributed to the short 

height of the smartphone screen while it is the landscape 

orientation. In ignoring the vertical gaze position, we were 

forced to concede a few assumptions involving the 

advancement of the line count. First, we assume that the 

user begins reading from the first line of text. We believe 

this is fair for new bodies of text that the user has not seen 

previously, but there is a solution for accommodating other 

starting locations without vertical gaze position. Since 

SwitchBack is implemented on devices with touchscreens, 

the user can double tap a word to simultaneously activate 

the gaze-tracking and notify the system of their starting 

point. The second assumption we concede in SwitchBack is 

that the user reads each line in sequential order. This 

assumption is confirmed by research in psychology that 

focuses on reading analysis [16], but the possibility still 

remains that users will go back and reread missed portions 

of their text. If the saccade is small and occurs quickly after 

the user reaches a new line, FAST will treat it as a false 

positive and continue tracking as normal; however, our 

algorithm does not address jumps when the user goes back 

multiple lines.  

Currently, SwitchBack is a one-size-fits-all system (i.e., no 

training or customization for each user); however, one 

could imagine a system that learns the device owner’s 

reading habits over time. SwitchBack could begin by 

checking if the user’s reading speed falls within the wide 

range of typical human speeds, as in our implementation, 

but then narrow that window to the particular user’s reading 



speed to ensure more reliable line prediction. The 

performance of SwitchBack could also be improved by 

taking into account the text being read. Currently, 

SwitchBack uses word count to estimate the amount of time 

it expects the user will take to read a line. Lines with larger 

words and more complicated content require a heavier 

cognitive load [20], causing the user to spend more time 

reading them. We examined articles from The New York 

Times that were of medium cognitive load according to the 

Flesch Reading Ease test [19]. Accounting for the content 

of the text on a deeper level would improve SwitchBack’s 

estimation of the user’s reading speed and allow our system 

to scale to text of varying cognitive load (e.g., scientific 

articles and children’s stories) and different reading 

behaviors (e.g., skimming). Even further, techniques like 

Kalman filtering could account for the content of the text 

and personalize predictions. 

FUTURE WORK 

The SwitchBack reading application modifies a user 

interface by highlighting where the user was last reading 

after he or she attends to an outside distraction. There are 

other reading application modifications that can be applied 

using FAST. One that was explored, but not tested in our 

user study, was automatic scrolling once the user reaches 

the bottom of the text, similar to Samsung’s Smart Scroll 

[17]. Currently, Smart Scroll and Smart Pause only use face 

detection and orientation to control the screen, but 

incorporating information about the user’s eyes could 

provide a better experience. Another possible modification, 

geared primarily towards users with poor eyesight, could be 

a magnifying glass-like feature that enlarges the current line 

of text for the user. 

Testing the SwitchBack outside of a laboratory setting 

would validate the application’s robustness. We did not 

evaluate SwitchBack outdoors because of the lack of 

control over conditions like the number of distractions 

encountered. We simulated walking with the treadmill to 

introduce some of the factors that would be met outdoors, 

but we have yet to test SwitchBack in different lighting 

conditions. We are confident that applications involving 

relative gaze changes are more robust to such conditions 

than applications involving absolute gaze position since 

saccades may be inferred with missing or incorrect data.  

We have used FAST in the context of reading, but we 

believe that it enables a broader range of applications. For 

instance, SwitchBack could be used by advertising 

companies to gauge whether or not their advertisements are 

engaging to users. FAST can be applied to any combination 

of text and images so long as the layout of the content on 

the screen is known. 

CONCLUSION 

As people become more attached to their mobile devices, 

the ability to balance attention towards their devices and 

awareness of their surroundings deteriorates. We have 

presented SwitchBack, a generalizable system for easing 

the user’s focus-of-attention back into a mobile device task 

after attending to an outside distraction. To evaluate 

SwitchBack, we focused on reading applications. We 

performed a technology evaluation to determine the 

performance of our Focus and Saccade Tracking (FAST) 

algorithm and found that we were able to estimate how 

many lines participants had read in a body of text to within 

a mean absolute percent error of just 3.9%. We then 

conducted a user study on our custom SwitchBack reading 

application. SwitchBack increased participants’ reading 

speeds by 7.7% in the presence of distractions. It is our 

hope that SwitchBack and FAST will prove useful towards 

realizing more situationally-aware mobile devices in the 

future. 
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