


standard for evaluating spirometry curves. Recently, Umberto
et. al. improved quality assessment by adding additional
features to ATS/ERS guidelines, categorizing spirometry
curves as of acceptable, unacceptable, or unknown (requiring
an expert to evaluate) clinical quality using a variety of hand-
picked features in a manually constructed decision tree model
[12].

We improve spirometry by detecting speci�c patient errors
with actionable outcomes: variable �ow throughout the ma-
neuver, coughing during the maneuver, extra breaths taken
through the maneuver, and early termination of the maneuver.
Although some patient errors (e.g. slow start and sub-
maximal �ow) have well-de�ned numeric guidelines [13],
the errors we chose to classify are more subjective and still
often rely on visual inspection for detection. Furthermore,
although past work has used carefully chosen thresholds
on manually-tuned features for classi�cation, we use ma-
chine learning methods to automatically learn a classi�cation
model. Each of these common errors has prescribed actions
to help patients ensure they do not make the same error
during later spirometry maneuvers [14]. For example, if a
patient is inadvertently taking extra breaths through their
nose near the end of the maneuver, nose clips might be
applied as a solution to improve the quality of the maneuver
[14]. Our results for automatically detecting patient errors
therefore have actionable outcomes for improving the clinical
quality of spirometry maneuvers. Overall classi�cation F1-
scores of 0.92024, 0.86498, 0.85515, and 0.84629 were
achieved for the respective errors of early termination, cough,
variable �ow, and extra breath.

II. BACKGROUND

Below is a brief description of each error detected [14, 9]
and a visual representation (Fig. 3).

1) Early Termination: Early termination of the spirometry
maneuver occurs when the patient has not exhaled all the air
from their lung. Additionally, if a spirometry maneuver is
not of suf�cient length, a maneuver may be labeled with the
early termination error. On a VT curve, this is characterized
by the lack of a plateau in total recorded volume. On a FV
curve, this is characterized by an abrupt drop-off in �ow near
the end of the test. Common coaching for this error entails
encouraging the patient to keep blowing through the test until
they empty their lungs.

2) Cough: Coughing during the test can disrupt clinically
useful metrics such as the volume of air exhaled in the �rst
second of the maneuver. On a VT curve, this is characterized
by a period where the recorded exhaled volume plateaus for
a short period of time. On a FV curve, this is characterized
by a sharp drop in �ow followed by recovery. A common
solution to deal with this error is to give the patient a glass
of water.

3) Variable Flow: Variable �ow occurs when the �ow
of exhaled air varies substantially throughout the maneuver.
This can affect clinically useful measurements such as the
total volume of air the patient can exhale in the �rst second or
the maximum �ow of air a patient can exhale. On a FV curve,

this is characterized by dips in �ow smoother than those of
a cough. A common solution to deal with this error is to
coach the patient to blow air out harder and keep blowing
through the maneuver.

4) Extra Breath: Extra breaths may be accidentally taken
in through the nose or the edges of a patient’s mouth sur-
rounding the spirometry mouthpiece. This can lead to falsely
reported statistics related to the patient’s lung capacity. On
a VT curve, this can be characterized by smaller versions of
the standard VT curve shape appearing after volume readings
plateau. On a FV curve, this can be characterized by smaller
peaks in �ow that appear at the end of the maneuver. A
common solution to deal with this error is to use nose clips
or instruct the subject to keep a tighter seal around the
spirometry mouthpiece.

III. M ATERIALS AND METHODS
A. Data Source

TABLE I: Overview of Data Set
Metric Value

Total curves in data set 19880 curves
Sample rate FV/VT curve 0.06 L/16.67 Hz

Mean age 19.17 years
Std. age 17.29 years

Age in years 3 - 95 years

Curves from clinical spirometers collected since 2011 as
part of a training effort were uploaded onto an online labeling
system1 for of�ine evaluation and feedback. An overview of
the data can be found in Table I. Of note is most of the
collected curves (72.2%) came from patients between the
ages of 6 and 18. Six trained respiratory therapists annotated
the curves with the appropriate error labels and entered
feedback on the quality of the maneuver. For each curve used
in training classi�ers, a single expert annotated the presence
of relevant errors. For each curve used in testing classi�ers,
a head annotator decided upon the �nal labels for the curve.
Separate classi�ers were trained to detect the presence of
each error. For this analysis, separate training and testing sets
for each error were created by sampling data from a larger
set of curves that was labeled with the pertinent error and
only that error as positive cases. At no point was the entire
data set utilized for training classi�ers to avoid bias issues
arising from error imbalances in the dataset. An equally-sized
random sampling of curves with no errors was used as the
negative case for each classi�er.

B. Training and Testing

Because our dataset was annotated by multiple experts,
this introduces the potential for noisy labels. Since ensem-
ble methods tend to be outperform other classi�ers in the
presence of noise, we use AdaBoost classi�ers with decision
trees as the base estimator. For training, 90% (N=17882)
of the data was used and the remaining curves were held
out for testing. Features for detecting the presence of errors
were created by feedback from doctors, spirometry training

1http://www.spirometry360.org
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Fig. 3: Example curves demonstrating features which indicate each error. The red line represents a maneuver with the
speci�ed error while the dotted blue line represents a similar maneuver without the speci�ed error

materials, [14, 9], and features derived from earlier work
on determining spirometry quality [12]. In total, 68 different
features were extracted for each error. After class balancing,
a total of 5728, 1344, 5614, and 1314 curves were used to
train for the early termination, cough, variable �ow, and extra
breath errors drawing from the 17882. Each classi�er was
then tested on a completely separate set of curves whose
labels had been annotated by a single respiratory therapist
with over a decade of experience. In total, 1998 curves were
part of the overall testing set. For each error, a minimum
of 486 curves were used for testing utilizing the partitioning
process used in training. The number of error and error-free
curves were balanced in each set.

C. Evaluation

Metrics used for evaluating the ef�cacy of classi�cation
include the precision, recall, and F1-score of each classi�er
when applied to a testing set. Consider spirometry curves
which are labeled with the presence of a relevant error
being detected by a classi�er. Let such spirometry curves
be considered a positive case for classi�cation. Lettp, fp,
tn, fn be the number of true positives, false positives, true
negatives, and false negatives in classifying the testing set

for each classi�er. PrecisionP , recallR , and F1-scoreF1
are de�ned as:

P =
tp

tp + fp
R =

tp
tp + fn

F1 = 2
PR

P +R

IV. RESULTS
A. Features

Though all features were used in the AdaBoost classi�er,
below are the two most signi�cant features for classi�cation
as decided by utilizing the Gini importance metric in the
decision tree models used.

1) Early Termination:
• The total time elapsed during the maneuver
• The volume exhaled in the last second of the maneuver
2) Cough:
• A heuristic for the total amount of time the slope in the

VT is relatively �at. This is obtained by examining the
period of volume exhaled where the slope of the FV
curve is less than 10% of the maximum slope.

• The maximum slope in the FV curve after peak �ow.
3) Extra Breath:
• The minimum slope in the VT curve.
• The maximum slope in the FV curve after peak �ow.
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Fig. 4: Receiver operating characteristic curves demonstrat-
ing the performance of each error classi�er

4) Variable Flow:
• The maximum slope in the FV curve after peak �ow.
• The sum of the total �rst derivative whose values were

positive after the area of highest �ow in the FV curve.

B. Classi�cation Error

Table II shows the performance of each classi�er on the
held out dataset. Each error was evaluated against on a set
of curves that had been annotated with either a single error,
or no error. Using the weighted con�dence scores of base
estimators in each classi�er, we construct receiver operating
characteristic (ROC) curves, as shown in Fig 4.

TABLE II: Classi�er Performance
Error Precision Recall F1-Score
Early Termination (n=486) 91.5% 92.6% 0.920
Cough (n=446) 81.7% 91.9% 0.865
Variable Flow (n=528) 79.3% 92.8% 0.855
Extra Breath (n=538) 82.4% 87.0% 0.846

V. D ISCUSSION

Our work provides a baseline for future work in automatic
error detection in spirometry. As there are signi�cant issues
in the quality of spirometry being performed in clinical
practice due to a lack of training [15, 7], our results suggest
that automated error detection could be a promising solution.
Future areas of work could include automatic diagnosis
of chronic lung diseases such as COPD and asthma from
spirometry data.

However, there is still room for signi�cant improvement.
For example, in our analysis, we considered only spirometry
curves with one labeled error (e.g. only extra breath), ignor-
ing the effects of compounded errors (e.g. extra breath and
variable �ow). We leave an analysis of these effects to future
work. Furthermore more complex feature engineering may
be needed to improve classi�cation performance on chosen
errors. A promising area of future research is to investigate

the use of recurrent neural networks (RNNs) which can be
adept at recognizing patterns in time series data, removing
the need for manually constructed features.

There are also limitations related to the dataset used in
our work. A majority of the curves used came from those
between the ages of 6 and 18. In the future, classi�cation
should be done across a more even distribution of ages
to ensure proper generalization of models to all ages. Fur-
thermore, labels in the training dataset were provided by 6
labelers. As a result, it is possible that variance between
labelers in labeling speci�c errors may exist. Compound-
ing this, the training set was annotated only by a single
professional rather than a group or pair. Further validation
should be done using data whose labels have been veri�ed by
multiple experienced professionals. In addition, as the data
set was heavily anonymonized analysis and control of patient
information, including the number of unique patients could
not be done. Nevertheless, our initial results are promising
and shows potential in automating coaching and feedback in
spirometry.
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