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Camera-based contactless photoplethysmography refers to a set of popular techniques for contactless physiological measure-
ment. The current state-of-the-art neural models are typically trained in a supervised manner using videos accompanied by 
gold standard physiological measurements. However, they often generalize poorly out-of-domain examples (i.e., videos that 
are unlike those in the training set). Personalizing models can help improve model generalizability, but many personalization 
techniques still require some gold standard data. To help alleviate this dependency, in this paper, we present a novel mobile 
sensing system called MobilePhys, the first mobile personalized remote physiological sensing system, that leverages both 
front and rear cameras on a smartphone to generate high-quality self-supervised labels for training personalized contactless 
camera-based PPG models. To evaluate the robustness of MobilePhys, we conducted a user study with 39 participants who 
completed a set of tasks under different mobile devices, lighting conditions/intensities, motion tasks, and skin types. Our 
results show that MobilePhys significantly outperforms the state-of-the-art on-device supervised training and few-shot 
adaptation methods. Through extensive user studies, we further examine how does MobilePhys perform in complex real-world 
settings. We envision that calibrated or personalized camera-based contactless PPG models generated from our proposed 
dual-camera mobile sensing system will open the door for numerous future applications such as smart mirrors, fitness and 
mobile health applications.
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1 INTRODUCTION
One of the visions of ubiquitous computing is the ability for people to interact with computing using any device.
Today, some of the most ubiquitously available sensors are RGB cameras. Camera-based contactless physiological
sensing refers to a set of techniques that enable contactless measurement of cardio-pulmonary signals and their
related vitals signs, such as heart rate, respiration rate and blood oxygen saturation. Unobtrusive physiological
sensing technology could help advance the vision of ubiquitous computing in numerous contexts, but perhaps
most directly in health, well-being and affective computing applications. Cardiac and respiratory processes
change the appearance of the body in several ways. Camera-based contactless photoplethysmography or remote
photoplethysmography (rPPG) involves the measurement of very subtle changes in light reflected from the skin
to capture the photoplethysmogram. When the light hits the skin, the amount that is absorbed is influenced
by the current peripheral blood volume. Subtle motions caused by blood pumping around the body can also be
measured using optical flow patterns to recover the ballistocardiogram (BCG) [1]. The resulting pulse waveforms
(PPG and BCG) can be used to derive heart rate and heart rate variability [32]. Based on natural sinus rhythm,
the pulse signal can also be used to estimate the respiration rate [32]. However, pulmonary signals are often more
obvious based on the motion of the torso due to the physical motion of inhaling and exhaling. A combination
of mechanical and optical information typically would provide the richest signal. In this paper, we focus on
camera-based contactless PPG measurement.
The COVID-19 pandemic acutely highlighted the importance and utility of camera-based contactless physio-

logical sensing technology [36, 39]. The desire to protect healthcare workers and patients and reduce the need for
people to travel illustrates how ubiquitous sensing could be used at scale. However, most people still do not have
a way to measure the necessary signals at home. In this paper, we contribute towards this goal by proposing a
system to easily personalize contactless PPG measurement models using a smartphone. These customized and
personalized models produced from our system enable any device equipped with an RGB camera (e.g., a smart
mirror, fitness equipment, such as Peloton or Mirror or even possibly a baby monitor), to provide comfortable,
in-situ vital monitoring. Compared to traditional pulse oximeters using contact PPG techniques, camera-based
contactless physiological sensing also provides a unique advantage to reduce the risk of infection for vulnerable
patients and discomfort caused by obstructive wires [43].

Although camera-based contactless physiological sensing comes with many advantages, it also presents various
technical challenges. First, there is still an accuracy gap between contact sensors and camera-based contactless
solutions. The US Federal Drug Administration (FDA) requires a new device for cardiac monitoring to have
substantial equivalence in accuracy with the FDA-approved devices. Unfortunately, none of the camera-based
contactless systems has reached the bar of requirements of FDA-approved cardiac devices. Second, current
camera-based contactless physiological sensing systems are especially sensitive to numerous noises such as
lighting conditions and motions from different activities. Prior research has shown that the accuracy of these
systems is significantly reduced while introducing such noises [5, 22]. Third, there is a large individual difference
in appearance (e.g., gender, skin type, makeup, hair) and physiology (e.g., blood volume dynamics). Creating a
generalizable system for these conditions presents an interesting challenge.

One way to solve the aforementioned limitations is to train a supervised model with a large and diverse set of
training data that contains samples that exhibit the types of variations expected at test time (e.g., race, lighting,
motion). However, collecting such a large and high-quality physiological dataset is challenging. Although the
process of data collection requires significant resources for recruitment and management, it is also risky to
disclose the sensitive identity and physiological information of participants. Hence, traditional supervised training
using a large-scale dataset is laborious and difficult for building an unbiased and generalizable camera-based
contactless physiological sensing system.
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In traditional clinical settings, physicians often use high-end medical devices to help calibrate customer-level
medical sensors for each patient. The procedure of calibration helps combat individual differences in sensor
performance and strengthens the validity of the output. Therefore, training a personalized model for each
individual in different environments is ideal. However, getting high-quality synchronized video and ground-truth
physiological signals for training a personalized model is difficult. This is especially complicated if patients
want to calibrate with their smartphones’ cameras because external medical sensors are barely compatible with
smartphones. A mobile system that performs self-calibration in camera-based contactless physiological sensing
is attractive.

Meta learning is an emerging technique in machine learning that aims to learn how to learn a task faster [15].
The goal of meta learning is to learn a quick learner for a new task (e.g., person). However, most meta learning
tasks assume that ground-truth labels are available in the dataset during training which indeed is not the case for
most applications. Because of the recent advancement of mobile sensors in smartphones, smartwatches, and IoT
devices, mobile sensing systems now have the ability to provide some high-fidelity sensor data, even ground-truth
labels for some applications. We believe the interplay between meta learning and mobile sensing systems has
been underused in many domains.

In this work, we use contactless PPG measurement as an example to demonstrate how novel sensing systems
can provide reliable pseudo physiological labels to meta learning algorithms for training few-shots adaption
models. We propose a self-calibrating meta-learning system called MobilePhys, which leverages both front and
rear cameras available on smartphones and the ability for us to measure physiological signals from multiple parts
of the body. Specifically, we design a system that simultaneously measures the PPG signal from the finger-tip and
the face of the subject during a calibration period to personalize a contactless measurement model that only relies
on analyzing the face. The pseudo PPG labels generated from MobilePhys using the rear camera and the index
finger can provide similar waveform quality to ground-truth PPG signals from medical-grade pulse oximeters.
We demonstrate that this is also reliable in challenging real-world conditions (e.g., motion, lighting and darker
skin types). Models customized or personalized using MobilePhys could then be deployed on the phone or shared
with other smart devices (such as a laptop or smart mirror [31]) to enable convenient contactless measurement.

In summary, we propose a novel smartphone-based personalized physiological sensing system that leverages
the back and front RGB camera to perform self-adaptation. More specifically, our contributions include:

• Proposing a novel mobile dual camera-based contactless physiological sensing system that generates
high-quality pseudo PPG labels for few-shot personalization and adaptation.
• Demonstrating that we can leverage contact finger-tip PPG signal derived from the smartphone’s rear
camera to train a personalized camera-based contactless physiological neural network.
• Exploring and evaluating the performance of MobilePhys under different conditions such as different mobile
devices, lighting conditions, motions, activities, skin types, and camera settings through comprehensive
user studies.
• Studying and investigating mobile camera settings, which we believe will be valuable for guiding future
research in mobile physiological sensing.
• Finally, we collected and will release the first-ever multi-modality mobile camera-based contactless physio-
logical dataset with different mobile devices, lighting conditions, motions, activities, and skin types. The
documented dataset has gold standard oximeter recordings and synchronized finger PPG signals from
the rear camera, and face videos along with other sensor signals (e.g., IMU, ambient light, etc.) from the
smartphone. The dataset comprises close to six hours of video and sensor data from 39 participants.
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2 RELATED WORK

2.1 Mobile and Camera-based Contactless Physiological Sensing
Thanks to their ubiquity and portability, smartphones are becoming a popular tool for monitoring activity and
health parameters. Smartphones cameras can be used to effectively measure the PPG [18] using imaging or
camera-based contactless PPG [27]. There are two primary forms this can take: 1) contact measurement in
which the subject places the camera against their skin (usually by placing their finger-tip over the camera lens)
and the flash is optionally used to illuminate their skin; 2) remote measurement in which the subject faces the
camera and a region of skin (usually on the face) is segmented and analyzed using ambient illumination. Contact
measurement is typically the most robust and PPG and oxygen saturation (SpO2) measurements [35] are well
established. Research is continuing into how these techniques can be used to measure blood pressure [34].

However, contact measurement is often not convenient. Camera-based contactless measurement can be used
for opportunistic measurement when people unlock their smartphone using the front camera. Moreover, due to
the simplicity and portability of ubiquitous cameras, camera-based contactless measurement also has a great
potential to provide scalable and accessible health sensing. While there any attractive properties of non-contact
systems including comfort, scalability, and convenience, it still has numerous challenges involved in accurately
measuring physiological signals such as PPG signal, as the distance between the camera and the region of interests
adds greater lighting variations, possibilities for objects to occlude the skin and/or there be motions of the ROI
relative to the camera.

Imager or camera-based contactless physiological sensing can be performed using handcrafted signal processing
methods or supervised learning. Fundamentally, these approaches are based on optical models that offer a way
to model the interaction between ambient illumination and skin. The Lambert-Beer law (LBL) and Shafer’s
dichromatic reflection Model (DRM) have been employed as inspiration for these algorithms. Thanks to their
simplicity, signal processing-based methods were the first to be used in pulse measurement [8, 32, 46] and
respiration measurement [41]. These pipelines primarily use color space conversions and signal decomposition.
Early work [19, 42] only used green channel data as the PPG signal strength is typically strongest in the
corresponding frequency bands. Subsequent research established that combining multiple color channels leads to
a solution that is more robust to variation in environment (e.g., ambient lighting) and motion [8, 10]. Most of
the previous work employed Principal Component Analysis (PCA) [47] or Independent Component Analysis
(ICA) [26, 32, 33] for signal decomposition. However, these approaches are susceptible to noise from head
movements and variations in lighting conditions. More advanced approaches solved this issue by taking advantage
of patients’ skin characteristics knowledge [8, 46] giving somewhat more robust results. However, it is still difficult
for these handcrafted signal processing pipelines to successfully separate the physiological signals from other pixel
variations, many of which may be much larger than the subtle changes resulting from physiological processes.

Supervised learning methods often achieve superior performance compared to unsupervised signal processing
approaches. These methods are able to capture highly non-linear relationships between the physiological signal
and facial videos. DeepPhys [5] was the first end-to-end neural approach for camera-based contactless physio-
logical measurement. The model learns a soft-attention mask learning appearance information related to the
physiological signals. The attention mechanism helps reduce noise by adapting the region of interest (ROI). Sub-
sequent research has succeeded in leveraging neural networks for BVP or respiration measurement[28, 38, 40, 48].
For instance, RhythmNet [28] computes spatial-temporal maps of the ROI facial areas to represent the HR signal
passed to the succeeding neural network. Song et al. [38] proposed transfer-learning a convolutional neural
network (CNN). The model is first trained using spatio-temporal images generated using synthetic contactless
PPG signals, and then real videos are used to refine the model. However, one drawback of these methods is the
computational overhead of resulting networks. Given the ubiquity of RGB cameras on smartphones, ideally, a
solution would run on these types of devices. Multi-task temporal shift attention network was proposed as one
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solution to enable on-device camera-based contactless cardiopulmonary monitoring on a smartphone [22] and
reached an inference rate of over 150 frames per second.
However, neural networks still face various challenges. Individual differences in appearance (e.g., skin type,

with glasses or not, pulse dynamics), environmental variations (e.g., light intensity, spectral composition) and
motion (e.g., talking, head movement) make it hard to train an algorithm that generalizes well to unseen data.
Camera settings and hardware sensitivity also vary significantly among devices, and prior research has shown
that video compression also affects physiological measurement result [24]. As a result, supervised models often
perform significantly worse on cross-dataset evaluation than within-dataset evaluation.

2.2 Meta-Learning and Personalized Physiological Sensing
Learning from a small number of samples or observations is a hallmark of an intelligent agent. However, traditional
machine learning systems do not perform well under such constraints. Meta-learning approaches tackle this
problem, creating a general learner that is able to adapt to a new task with a small number of samples [15].
Previous work in meta-learning had focused on supervised computer vision tasks [37, 49] and applied these
methods to image analysis [20, 44]. In the video domain, meta-learning has been successfully applied in object
and face tracking [6, 30]. In these tasks, the learner needs to adapt to the individual differences in the appearance
of the target and then track it across frames, even if the appearance changes considerably over time in the video.
Choi et al. [6] present a matching network architecture providing the meta-learner with information in the form
of loss gradients obtained using the training samples.

Table 1. Comparison of State-of-the-Art Methods in Camera-Based Contactless Physiological Sensing

Method On-Device Adaptation Reliable Pseudo Label
TS-CAN [22] ✓ ✗ ✗

Meta-rPPG [17] ✗ ✓ ✗
MetaPhys [23] ✓ ✓ ✗

MobilePhys (Ours) ✓ ✓ ✓

As deep learning methods struggle to generalize to unseen tasks and data, developing a personalized physio-
logical sensing model using only a few unlabeled samples is promising. Encouraged by success on other tasks, we
leverage meta-learning as the way of adapting our camera-based contactless PPG sensing algorithms. This work
builds upon two specific examples of meta-learning applied to PPG measurement. Meta-rPPG [17] first introduced
meta-learning for heart rate estimation. It achieves self-supervised weight adjustment by generating synthetic
gradient and minimizing prototypical distance. MetaPhys [23] was then proposed is based on Model-Agnostic
Meta-Learning (MAML) [12]. It took advantage of the advanced on-device network architecture [22] and probed
into both supervised and unsupervised training regimes, both of which yielded satisfactory results. For supervised
learning, ground-truth signal comes from medical-grade contact sensors, while in the unsupervised version,
pseudo labels are used instead in the meta-learner training process. Though effective, these prior works rely
much on synchronized video and ground truth obtained from medical-grade devices. However, it is difficult and
laborious to collect a large-scale physiological dataset. In this work, we propose a mobile sensing system that
leverages both front and rear cameras to generate contact PPG labels and personalize a camera-based contactless
physiological system to address this issue. We summarize the difference between popular recently published
neural methods in camera-based contactless physiological sensing in Table 1. Since our goal is to develop an
on-device mobile personalization system for camera-based contactless physiological sensing, MobilePhys has

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 1, Article 24. Publication date: March 2022.



24:6 • Liu and Wang and Xie, et al.

Finger PPG
(from rear camera )

A
p
p
e
a
ra
n
ce

1

M
o
ti
o
nTS-CAN

θi

Individual Query Set

 Contactless PPG
(from front camera)

Query Loss 
(Mean-Squared Error)

Training
Individual Support Set

Personalized
Network

Personalized 
Contactless PPG

(from front camera)

Gradient Descent

Evaluation

Personalized
Network

Test Loss
(Mean-Squared Error)

Personalized   Contactless PPG

Ground-Truth Contact PPG from Pulse Oximeter

MobilePhys

	∇𝓛if(θ)
	∇𝓛if(θ)

Fig. 1. We present MobilePhys, a novel mobile camera-based contactless physiological sensing system that leverages rear
camera to generate self-supervised "ground-truth" PPG label to help train a contactless and personalized physiological model

clear benefits over the state-of-the-art methods. It is also the only system that can help generate reliable pseudo
labels under various contexts (e.g., motion, lighting, skin types).

3 METHOD
In the following sections, we first describe the design of our sensing system for personalized camera-based
contactless physiological sensing called MobilePhys. We then explore how to combine meta learning with
MobilePhys to perform few-shot personalization without the need for clinical-grade sensors.

3.1 Mobile Camera-based Contactless Physiological Sensing System
We propose a novel mobile dual-camera sensing system to perform personalized physiological measurement
called MobilePhys (Figure 1). We leverage the fact that modern smartphones are equipped with at least two RGB
cameras. The one on the front of the device is typically used for “FaceTiming” and selfies, and another one on
the back of the device is used for photography and video recording. Thanks to significant investment in camera
technology, these mobile cameras are typically high-quality optical sensors (e.g., low signal-to-noise ratio and
high spatial resolution). Previous work has shown that the PPG signal and heart rate can be measured accurately
from the fingertip and face using these cameras [7]. However, there are no examples that combine these sensors
together to create a self-supervised system.
The basic principle behind both contact and non-contact PPG is that the volume of blood flow influences

light absorption in the skin. The optimal frequency is approximately 540nm (where the absorption of light by
hemoglobin is highest) [2]. Thus customized PPG sensors are usually designed with green light sensors (e.g.,
Apple Watch). Unfortunately, most smartphones are not equipped with green light sensors specifically designed
for PPG measurement. However, the camera can be used as a proxy.
Our smartphone-based sensing system leverages the rear camera to provide a reference “ground-truth” PPG

signal for personalizing a non-contact algorithm that measures the PPG directly from a video of the face. More
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specially, for a short calibration recording, we spatially average the red channel camera frames from the backward-
facing (rear) camera while the participant has their finger over it. We turn on the built-in flashlight to increase
the illumination. Simultaneously we capture frames of the participant’s face using the front RGB camera. As 1
demonstrates, a person holds the smartphone while pressing their index finger on the rear camera. By using this
dual-camera sensing system, it gives us perfectly synchronized contact and non-contact PPG data. Through using
a few-shot meta learning algorithm (described in the next section), we then train a personalized non-contact PPG
measurement algorithm (bootstrapping from a pretrained network). Each user only needs to hold the smartphone
in this way for 18 seconds to create their own personalized physiological sensing model and, in the future can
leverage that model without needing to place their finger on the rear camera.

3.2 Design and Implementation
While it may seem a simple concept, implementing MobilePhys was not trivial. We used a Xiaomi MI 8 for this
project because it has a well-supported API for dual-camera development. To validate our method, we created a
system to synchronize gold standard PPG measurements from a clinical-grade pulse oximeter, fingertip video
recordings from the rear camera, and facial video from the front camera. Something that we observed was that
many smartphone cameras struggled to maintain a consistent sampling rate while recording from both cameras
and connecting a medical-grade pulse oximeter. This may in part be due to power consumption. To solve this
limitation, we developed a customized router-based flask system in which we can connect the medical-grade
pulse oximeter to a laptop while synchronizing the external pulse oximeter and the data generated from our
mobile app. More specifically, our smartphone app system provides a trigger signal to the laptop that is connected
with the gold standard pulse oximeter when the mobile app starts recording. The laptop and the mobile phone
were connected to a local network to minimize delay in communication. We viewed precise synchronization as
an important part of our system so that the data can ultimately be used for training the camera-based contactless
measurement algorithm that predicts the pulse waveform value for every video frame.

In building our system, we identified several important parameters that impacted the data quality. Smartphone
video recording software has many automatic controls to make video recordings more visually pleasing. These
include but are not limited to automatic exposure, white balance and sensitivity controls. We found that these
controls on smartphones were more aggressive than those on other video capturing devices (e.g., DSLRs). This
is perhaps because these devices are expected to operate with little user control in many contexts and lighting
conditions. Therefore, as part of our analysis, we explored how these mobile camera controls affected the accuracy
of camera-based contactless PPG measurement. Since camera-based contactless physiological measurement aims
to capture very small changes of color changes from the skin, subtle noise can easily corrupt or interfere with the
signal we aim to extract. Surprisingly, this type of systematic analysis is not often performed and we believe that
characterizing the impact of these features will help other researchers who are building camera-based contactless
physiological sensing systems.

To recover the PPG from the rear camera video, we used the shift method to decode the Android color integer
format pixel data into four ARGB components 1, where A represents the Alpha (transparent) component, and R,
G, B represents the Red, Green, and Blue components respectively. We also save the corresponding timestamp of
the frame for subsequent data synchronization processing. During the measurement, the participants placed their
index finger on the rear camera as Figure 3 illustrates. The finger PPG signal is the spatial average of R-channel
values with Max-min normalization from the frames collected by the rear camera. We believe that the contact
finger-tip PPG signal is generally very accurate and close to those from the gold standard pulse oximeter.

1https://developer.android.com/reference/android/graphics/Color#decoding
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3.3 Personalized Algorithm
Camera-based contactless physiological sensing is sensitive to many types of noise, including motion noise,
lighting noise (e.g., different ambient lighting), and appearance noise (e.g., different skin types). Due to the
complexity of collecting physiological data and potential risks of leaking sensitive information, it is challenging to
collect a large-scale camera-based contactless physiological dataset to perform traditional supervised training and
train a generalizable model. Moreover, the issues of overfitting in neural network learning based methods have
also been raised [5]. Past research [23] called MetaPhys has demonstrated that meta learning has a great potential
in camera-based contactless physiological sensing. MetaPhys has shown that that combing meta learning with
a 18s video from the target person can help generate a personalized model for a specific appearance (e.g., skin
type). However, this paper did not demonstrate the use of personalization in different lighting conditions and
motion tasks and in more ubiquitous and mobile settings.
In this paper, we adopt and create a variant of MetaPhys to enable few-shot personalization, described in

Algorithm 1. Similar to MetaPhys, we also used Model-Agnostic Meta-Learning (MAML) [12] to update model
parameters and create customized models with few-shot learning. The goal of MAML is to produce a robust
initialization that enables faster and efficient (i.e., few shots or less data) learning on an unseen target task.
Since our algorithm is based on MetaPhys, we apply a similar scheme to train our algorithm. Our algorithm
starts with a pre-trained TS-CAN model [22] to initialize basic representation to model the spatial and temporal
relationship between skin pixels and physiological signals. TS-CAN is a two-branch (appearance and motion)
on-device neural network for contactless physiological sensing. The input to TS-CAN is a sequence of video
frames (e.g., face) and the output of it is a sequence of physiological signals ( first-derivative of the pulse signal).
The appearance branch takes raw video frames and generates attention masks for the motion branch and helps
the motion branch to focus on the regions of interest containing physiological signals instead of unessential
parts (e.g., hair, cloth). The motion branch leverages tensor shift module [21] to efficiently perform temporal and
spatial modeling simultaneously and extract temporal relationships beyond consecutive frames.

Algorithm 1 MobilePhys Training: Meta-learning Algorithm for Mobile Physiological Signal Personalization
Require: 𝑆 : Subject-wise video data
Require: A batch of personalized tasks 𝜏 where each task 𝜏𝑖 contains N video frames from the front camera and

subject 𝑆𝑖
Require: A label generator 𝐺 using rear PPG
1: 𝜃 ← Pre-training TS-CAN on AFRL dataset
2: for 𝜏𝑖 ∈ 𝜏 do
3: 𝐾 ← Sample 𝐾 support frames from videos of 𝜏𝑖 with rear-camera generated contact PPG labels
4: 𝐾 ′← Sample 𝐾 ′ query frames from videos of 𝜏𝑖 with rear-camera generated contact PPG labels
5: 𝜃𝜏𝑖 ← 𝜃 − 𝛼∇𝜃L𝜏𝑖 𝑓 (𝐾, 𝜃 ), Update the personalized params. based on indiv. support loss
6: end for
7: 𝜃 ← 𝜃 − 𝛽∇𝜃

∑
𝜏𝑖 L𝜏𝑖 𝑓 (𝐾 ′𝜏𝑖 , 𝜃𝜏𝑖 ), Update the global params. based on individuals’ query loss

Upon the TS-CAN backbone, we treat each individual as a task and split each individual’s data (i.e., facial video
data) into a support set 𝐾 and a query set 𝐾 ′. After training with the support set, a personalized model is produced
after parameter updates. However, most meta-learning applications assume the labels are available during training,
which is not always the case in many machine learning applications. Our novel system, MobilePhys, can generate
self-supervised high-quality "ground truth" PPG signal during the training of meta learning algorithm and produce
a personalized model for each unseen individual (task). Therefore, both 𝐾 and 𝐾 ′ come with self-supervised
"ground truth" PPG signal labels from finger-tip contact PPG using the rear camera. Since the ultimate goal of
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meta learning is to generate a robust and efficient initialization, we then use the query set and the self-supervised
labels to evaluate the performance of the personalized model 𝜃𝑖 and further optimize the global initialization
accordingly. The details of the algorithm are described in Algorithm 1.

4 DATA COLLECTION
In this section, we describe our data collection study, including the apparatus, participant demographic, the user
study design and procedure.

4.1 Apparatus
Figure 2 shows the apparatus used for data collection. To obtain the gold standard PPG signal, we used a finger
pulse oximeter2. The pulse oximeter was connected to a desktop via USB. The raw PPG data were streamed to
a desktop running custom python software via the UART protocol. The desktop hosted a back-end server for
logging the raw video data from a Xiaomi 8 and an iPhone 11 via a WiFi router. By clicking a start button on a
customized data collection application, the mobile app was triggered to simultaneously start the data collection.
We recorded raw video from the front RGB camera, the true depth camera (iPhone 11), the ambient light sensor,
the microphone, 9-axis inertial measurement unit (IMU), and the rear camera with flash on for camera-based
contact gold standard finger PPG. In this work, we only use the RGB videos and pulse oximeter data; however,
we anticipate that the other sensor data will be useful in future research and were recorded in our dataset.

Fig. 2. The hardware setup includes (A) an oximeter for gold standard contact PPG measurement, (B) a WiFi router
for wirelessly streaming the smartphone’s data to the desktop, (C) a desktop with the back-end server for collecting
and synchronizing data, and (D) a Xiaomi 8 / iPhone 11 smartphone providing signals from multiple built-in sensors for
physiological sensing.

4.2 Participants
We recruited a total of 39 participants (14 females and 25 males) in age of 20-35 (avg. = 27.1, s.d. = 4.1). Data
were collected for 24 subjects using a Xiaomi 8 and for 15 subjects with an iPhone 11. Table 2 illustrates the
distribution of gender and Fitzpatrick skin type [13] in our cross-device dataset, as well as the number of subjects
who wore glasses, and/or makeup or had facial hair in the video recordings. All the participants are healthy
adults and were recruited from a local university. It is worth noting that the second natural light condition is
worse in the iPhone 11 data due to lower natural light intensity during the winter months, while the Xiaomi 8
data were collected in the spring/summer.

2HKG-07C+ infrared pulse sensor. http://hfhuake.com/
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(A) Skin Type: II
Female, Talking

(B) Skin Type: III
Male, Head Motion in Yaw

(C) Skin Type: V
Male, Stationary

Fig. 3. An illustration of some of the tasks in our data collection. We recruited subjects with different skin types and recorded
the data under different motion tasks and lighting conditions. The head-shot images show video frames recorded by Xiaomi
8/iPhone 11’s front RGB camera.

Table 2. The distribution of gender and Fitzpatrick skin type in our cross-device dataset.

Device I+II III+IV V+VI Female Male Glass Makeup Facial Hair Total
Xiaomi Mi 8 8 14 3 7 17 7 5 11 24
iPhone 11 3 6 5 7 8 4 4 6 15

All 11 20 8 14 25 11 9 17 39

4.3 Experimental Design
In this study, we not only explore a personalization approach for adapting contactless PPG measurement models
using a dual smartphone camera system MobilePhys, but also systematically investigate the effect of motion
tasks and lighting conditions. Each participant was also recorded before and after exercises. The details of our
experiment design are summarized in Table 3 and main variables are discussed in the following:

• Lighting Condition: Natural sunlight, LED light, and incandescent light. These three common lights have
significant spectrum differences, as Figure 4 shows.
• Lighting Intensity: To better investigate how light intensity impacts the performance of camera-based
contactless physiological sensing, we also recorded data in three LED lighting intensities (bright(220
Lux)/moderate(110 Lux)/dim(55 Lux)) in the second batch experiment using an iPhone 11. By controlling
the luminance value under LED lighting conditions, we were able to mimic the light intensity in different
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scenarios (220 Lux - office lighting; 110 Lux - family living room lighting; 55 Lux - smartphone screen
lighting).
• Head Motion: stationary, talking, head rotation in yaw direction, and random head motions as Figure 3
illustrates.
• Exercise: participants were instructed to raise their heart rate by conducting 30 seconds of exercise such
as running.
• Skin Type: We recruited participants from different backgrounds and have different skin types. The
participants are splitted into into three groups based on Fitzpatrick skin type: 1) I+II, 2) III+IV, and 3) V+VI.

4.4 Experimental Protocol
The experiments were conducted in a conference room with a large window to ensure the availability of natural
ambient light. The natural light could be blocked by closing a thick curtain. A desk was placed in the center of
the conference room. Participants were asked to sit on the side facing the window. Another black curtain was
used as the background screen.

(A) Natural Light (B) Incandescent Light (C) LED Light

Fig. 4. The light spectrum of the three lighting conditions. An incandescent light bulb and a LED lamp are illustrated in (B)
and (C). Natural light is broader spectrum than both LED and incandescent illumination.

Every participant was welcomed into the experiment room and informed of the research goals and procedure.
After reading and signing the consent form, each participant was instructed to place their left index finger
into the pulse oximeter and their right index finger onto the smartphone’s rear camera. The position of the
smartphone was adjusted to ensure the front camera captured the participant’s face. Then, to start each data
recording period, the experimenter clicked a button on our customized Android mobile app. This started video
recording from the front and rear cameras, the smartphone’s sensors (e.g., IMU and microphone) and the contact
pulse oximeter. Under the natural sunlight condition, the curtains were adjusted to ensure the facial video was not
over dark or exposed. Under LED or Incandescent lighting conditions, curtains were drawn down to minimize the
sunlight. A LED or incandescent lamp was used to simulate these two lighting scenarios. The distance between
the participant and the lamp was carefully adjusted to alter the luminance value measured using a photometer
at the participant’s face. When participants performed head motions, they were asked to turn their heads at a
uniform speed. To explore variable heart rate ranges, we also asked participants to conduct exercises to raise
their heart rate on two trials. It took approximately 40 minutes to complete the recordings for each participant.
Each participant received a 25 USD gift card.
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Table 3. Details of experimental order under different conditions.

Trial No. Exercise Lighting Motion Duration (s)
1 NO LED (220 Lux - iPhone only) Stationary 60
2 NO LED (110 Lux) Stationary 60
3 NO LED (55 Lux - iPhone only) Stationary 60
4 NO Incandescent Stationary 60
5 NO Natural Sunlight Stationary 60
6 NO Natural Sunlight Random 60
7 NO Natural Sunlight Yaw Rotation 60
8 NO Natural Sunlight Talking 60
9 YES Natural Sunlight Stationary 60

4.5 Dataset Description
In total, we collected 168 60-second front camera videos fromXiaomiMi 8 and 200 front camera videos from iPhone
11. These videos were synchronized with the smartphone’s rear-camera based contact PPG signal, true-depth
camera signal (iPhone only), 9-axis motion signal (accelerometer, gyroscope, and magnetometer), front ambient
light sensor data, and audio signal as well as the oximeter PPG signal. This cross-device dataset was collected to
explore multiple methods to enable camera-based contactless physiological sensing using ubiquitous smartphone
sensors. In this paper, we only use a subset of the dataset for contactless PPGmeasurement. Specifically, we utilized
facial RGB videos, finger PPG signal and gold standard oximeter PPG signal to explore mobile personalization
methods for contactless PPG measurement using the dual-camera setting of the commodity smartphone. However,
because of the diversity and high quality of this dataset, researchers will have opportunities to explore other
interesting research questions. We plan to release this dataset with this paper.

5 TRAINING AND EVALUATION

5.1 Training Dataset
In order to train MobilePhys, we used two datasets: one for pre-training the backbone (TS-CAN), and the other
for training the meta learner 𝜃 . We used a similar training regime as MetaPhys [23]. We first trained a TS-CAN
backbone with the AFRL dataset [11]. This dataset consists of 300 videos from 25 participants, including 17 males
and 8 females. The raw resolution of each video is 658x492, and the sampling rate is 30Hz. Gold-standard PPG
measurements were recorded from a contact reflective PPG sensor attached to the subject’s index finger (similar
to the procedure in our study). We use the ground-truth PPG signal from a pulse oximeter to train our backbone.
The dataset includes videos with various head motions but not talking. Each participant was asked to keep
stationery for the first two trials. Then participants were instructed to perform three head motion tasks, including
rotating their head along the vertical axis. The last task of AFRL is random rotation once every second to one of
nine predefined locations. For the regular head motion tasks, the subjects were asked to perform different head
motions with increasing speed (10 degrees/second, 20 degrees/second, 30 degrees/second, 40 degrees/second, 50
degrees/second, 60 degrees/second).

Along with the AFRL dataset, we leveraged the UBFC [3] to train the initialization of our meta learner 𝜃 . UBFC
is a smaller dataset with 42 videos from 42 different participants. The raw resolution of each video is 640x480 in
and uncompressed 8-bit RGB format, and the sampling rate is also 30hz. The pulse oximeter they used to collect
gold standard PPG signals was a CMS50E transmissive pulse oximeter. Participants were asked to keep stationary
during all the experiments. It is worth noting that both AFRL and UBFC are recorded by a professional high-end
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camera, not a camera from a mobile device such as a smartphone. Neither of these datasets includes subjects
with darker skin types (e.g., V, VI). All the data were recorded under one indoor lighting, and the subjects were
stationary.

5.2 Implementation & Experimental Details
5.2.1 MobilePhys Implementation: We implemented MobilePhys based on MetaPhys’s open-sourced code [23].
MobilePhys is also based on a gradient computation framework called higher [14]. We first trained our backbone
network, TS-CAN, using the AFRL dataset. We then train the meta-learner using the UBFC dataset. In this meta-
learner training stage, we considered each subject’s dataset as a task and used 18 seconds of video data and PPG
labels from the pulse oximeter (same as MetaPhys) as the support set 𝐾 (see 3.3) for training a personalized model.
The rest of the data in the task (i.e., subject) is considered as query data to further evaluate the personalized model
and optimize the meta-learner through back-propagation. The output of this training process is a pre-trained
meta-learner which only takes 18-second labeled data to generate a personalized model.

In the testing stage, as Algorithm 1 shows, we considered each experimental trial as a task (e.g., natural light +
stationary + iPhone 11). The support set is the first 18-second frames recorded from the smartphone’s front RGB
camera (Xiaomi 8 or iPhone 11) and the ground-truth PPG labels 𝜏𝑖 were generated by its rear RGB camera. The
output of this adaptation process for each task is a personalized model, which can be further used to evaluate the
rest of the data within the task. An Adam optimizer [16] and a learning rate of 0.001 were used to optimize the
outer loop of Algorithm 1. A stochastic gradient descent (SGD) optimizer with an inner learning rate (𝜃 ) of 0.003
was used to optimize the adaption stage. We trained 10 epochs for each experiment.

5.2.2 Baseline Implementation. Since prior work has shown that neural network based methods significantly
outperform signal processing based demixing approaches. In this work, we only compare MobilePhys’s per-
formance against the state-of-the-art neural method - TS-CAN [22] and MetaPhys [23]. Our goal is to propose
a mobile physiological sensing system; therefore, using models that run on-device is important. To the best
of our knowledge, TS-CAN and MetaPhys are the best baseline papers that focus on on-device camera-based
physiological sensing. Therefore, we chose TS-CAN and MetaPhys as our baselines.
For TS-CAN experiments, we trained TS-CAN with aggregated training datasets of AFRL and UBFC as the

backbone network. In the testing stage of each task (same experiment trial as the MobilePhys’s testing stage),
we then use the first 18 second’s video data and label to fine tune the network and evaluate the rest of the data
within the task.

For MetaPhys experiments, we used the same UBFC pretrained meta-learner described in the previous section.
However, during the teasing stage, the label used for adaption in MetaPhys is pseudo labels generated by POS
[45] according to MetaPhys. POS is an unsupervised signal processing method that computes a projection plane
orthogonal to the skin type based on optical and physiological principles. The difference between MobilePhys and
MetaPhys is the label used for few-shot adaption where our proposed MobilePhys is able to generate high-quality
pseudo labels while MetaPhys relies on the unreliable pseudo label, which could be very noisy in challenging
tasks (e.g., darker skin types, lighting, motion, etc.)

After getting the predicted PPGwaveform from the network, we applied a band-pass filter to remove unessential
noise. More superficially, we used a 2nd-order butterworth filter with a cutoff frequency of 0.75 and 2.5 Hz to
keep the signal containing realistic adults’ heart rate. During the evaluation stage, we compare the heart rate
computed from filtered predicted PPG signal against the heart rate calculated from PPG labels recorded by a
pulse oximeter (see Figure 1).

5.3 Evaluation Metric
We used three metrics to evaluate the performance of MobilePhys and our baseline.
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Table 4. Pulse Measurement (Heart Rate) on Different Motion Tasks.

Experimental Conditions Xiaomi 8 / iPhone 11
Method Exercise Task Lighting MAE SNR 𝜌

MobilePhys No Head Motion in Yaw Natural Light 10.71/11.40 -8.73/-8.05 0.40/0.34
TS-CAN No Head Motion in Yaw Natural Light 12.04/12.89 -9.91/-9.46 0.06/0.33
MetaPhys No Head Motion in Yaw Natural Light 13.35/13.93 -8.81/-12.77 0.37/0.21

MobilePhys No Talking Natural Light 3.38/6.33 -2.16/-7.61 0.70/0.59
TS-CAN No Talking Natural Light 11.61/9.38 -7.05/-10.53 0.04/0.33
MetaPhys No Talking Natural Light 3.99/7.67 -3.24/-9.93 0.65/0.43

MobilePhys No Random Head Motion Natural Light 4.74/6.27 -6.47/-7.04 0.84/0.58
TS-CAN No Random Head Motion Natural Light 13.44/7.14 -11.9/-7.68 0.31/0.58
MetaPhys No Random Head Motion Natural Light 8.92/6.98 -8.69/-8.25 0.33/0.56

MAE = Mean Absolute Error, 𝜌 = Pearson Correlation, SNR = BVP Signal-to-Noise Ratio.

5.3.1 Mean Absolute Error (MAE). For calculating the MAE between our model estimates and the gold-standard
heart rate calculated from the contact PPG sensor across all the subjects within our collected dataset. The equation
of MAE is shown below:

𝑀𝐴𝐸 =
1
𝑇

𝑇∑︁
𝑖=1
|𝐻𝑅𝑖 − 𝐻𝑅′𝑖 | (1)

In Equation 1, HR is the gold-standard heart rate and HR’ is the estimated heart rate from the videos, respectively.
The gold-standard HR frequency was calculated from the PPG signal collected from a pulse oximeter.

5.3.2 Pulse Signal-to-Noise Ratios (SNR). We calculated PPG signal-to-noise ratios (SNR) based on the method
proposed by DeHaan et al. [9]. This captures the signal quality of the recovered predicted camera-based contactless
PPG signal. The gold-standard HR frequency was determined from the contact pulse oximeter.

𝑆𝑁𝑅 = 10log10

( ∑240
𝑓 =30((𝑈𝑡 (𝑓 )𝑆(𝑓 ))2∑240

𝑓 =30(1 −𝑈𝑡 (𝑓 ))𝑆(𝑓 ))2)

)
(2)

where 𝑆 is the power spectrum of the PPG signal (S), f is the frequency in beats per minute. HR is the heart
rate calculated from the gold-standard device and U𝑡 (f) is a binary template for the heart rate region from HR-6
BPM to HR+6BPM and its first harmonic region from 2*HR-12BPM to 2*HR+12BPM, and 0 elsewhere. These
parameters and regions are defined by in [9].

5.3.3 Pearson Coefficient. We also calculated the Pearson Correlation between the estimated heart rates from
camera-based contactless physiological measurement and the gold-standard heart rates from the contact pulse
oximeter.

6 RESULTS AND FINDINGS

6.1 Quantitative Results of MobilePhys
We compare the performance of MobilePhys with the state-of-the-art traditional supervised training algorithm
(TS-CAN) and model-agnostic meta-learning algorithm (MetaPhys) using the data collected from Xiaomi 8
(Android) and iPhone 11 (iOS). The reported measurements include Mean-Square-Error (MAE), Signal-to-Noise
Ratio (SNR) and Pearson Coefficient as metrics (𝜌). In order to investigate how different motion tasks impact
the performance of camera-based contactless physiological sensing systems, we first conducted experiments
when the lighting condition was fixed. As Table 4 shows, under the natural light condition, we compared the
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Table 5. Pulse Measurement (Heart Rate) after Exercising.

Experimental Conditions Xiaomi 8 / iPhone 11
Method Exercise Task Lighting MAE SNR 𝜌

MobilePhys Yes Stationary After Exercise Natural Light 3.49/7.68 -2.67/-7.43 0.85/0.79
TS-CAN Yes Stationary After Exercise Natural Light 8.67/10.83 -5.36/-9.75 0.44/0.53
MetaPhys Yes Stationary After Exercise Natural Light 3.69/12.63 -2.06/-10.79 0.81/0.33

MAE = Mean Absolute Error, 𝜌 = Pearson Correlation, SNR = BVP Signal-to-Noise Ratio.

Table 6. Pulse Measurement (Heart Rate) on Different Lighting Conditions.

Experimental Conditions Xiaomi 8 / iPhone 11
Method Exercise Task Lighting MAE SNR 𝜌

MobilePhys No Stationary Natural Light 0.97/4.27 1.54/-7.04 0.99/0.71
TS-CAN No Stationary Natural Light 4.32/7.14 -0.31/-7.68 0.49/0.58
MetaPhys No Stationary Natural Light 1.49/6.98 0.24/-8.25 0.97/0.56

MobilePhys No Stationary Incandescent 0.73/5.50 2.87/-7.33 0.99/0.85
TS-CAN No Stationary Incandescent 1.05/10.72 1.63/-10.76 0.97/0.02
MetaPhys No Stationary Incandescent 2.60/10.34 3.06/-9.91 0.73/0.43

MobilePhys No Stationary LED 1.76/3.05 2.85/-1.99 0.96/0.86
TS-CAN No Stationary LED 1.63/8.37 2.22/-5.07 0.99/0.09
MetaPhys No Stationary LED 1.65/7.69 2.56/-7.58 0.96/0.54

MAE = Mean Absolute Error, 𝜌 = Pearson Correlation, SNR = BVP Signal-to-Noise Ratio.

Table 7. Pulse Measurement (Heart Rate) on Different Skin Types. All the participants are used to evaluate how skin types
impact MobilePhys.

Experimental Conditions All Subjects
Method Skin Task Lighting MAE SNR 𝜌

MobilePhys I+II Stationary Natural Light 1.51 0.16 0.98
TS-CAN I+II Stationary Natural Light 4.52 -1.92 0.60
MetaPhys I+II Stationary Natural Light 2.19 -0.95 0.95

MobilePhys III+IV Stationary Natural Light 1.04 0.09 0.99
TS-CAN III+IV Stationary Natural Light 2.69 -1.18 0.91
MetaPhys III+IV Stationary Natural Light 1.91 -1.04 0.88

MobilePhys V+VI Stationary Natural Light 2.31 -7.30 0.98
TS-CAN V+VI Stationary Natural Light 8.45 -8.63 0.68
MetaPhys V+VI Stationary Natural Light 17.31 -8.65 0.42
MAE = Mean Absolute Error, 𝜌 = Pearson Correlation, SNR = BVP Signal-to-Noise Ratio.

performance of MobilePhys and baselines in three motion tasks: 1) head motion in yaw, 2) talking and 3) random
head motion. On the head of motion in yaw task, MobilePhys improved 11.3%/19.1% in MAE, 13.0%/18.0% in
SNR, and 130.0%/22.2% in Pearson coefficient in average across all the subjects in two mobile devices when
compared with TS-CAN and MetaPhys respectively. On the talking task, MobilePhys outperformed our baselines
by 58.0%/16.5% in MAE, 49.3%/26.8% in SNR, and 334.0%/16.3% in Pearson coefficient, compared to our baseline
methods. For the random head motion task, MobilePhys showed it could enhance the performance by 51.6%/34.8%
in MAE, 34.9%/21.5% in SNR and 78.8%/76.8% in Pearson coefficient.
Furthermore, to help us understand whether the models work well for higher heart rates, we also evaluated

MobilePhys on the recordings collected immediately after the participants conducted one minute exercise (e.g.,
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Table 8. Pulse Measurement (Heart Rate) on Different LED Light Intensities. Only participants with iPhone 11 were enrolled
in light intensity studies.

Experimental Conditions iPhone Subjects
Method Light Intensity Task Lighting MAE SNR 𝜌

MobilePhys 55 Lux Stationary LED 4.58 -6.24 0.87
TS-CAN 55 Lux Stationary LED 6.78 -7.91 0.14
MetaPhys 55 Lux Stationary LED 6.98 -9.40 0.80

MobilePhys 110 Lux Stationary LED 3.27 -3.03 0.81
TS-CAN 110 Lux Stationary LED 6.28 -4.79 0.36
MetaPhys 110 Lux Stationary LED 6.26 -2.55 0.12

MobilePhys 220 Lux Stationary LED 1.93 -1.59 0.97
TS-CAN 220 Lux Stationary LED 1.64 -1.38 0.98
MetaPhys 220 Lux Stationary LED 4.94 -5.59 0.65
MAE = Mean Absolute Error, 𝜌 = Pearson Correlation, SNR = BVP Signal-to-Noise Ratio.

running). As Table 5 shows, MobilePhys demonstrates superior performance compared to TS-CAN and MetaPhys
where it can reduce the MAE by 46.3%/28.4%. The SNR and Pearson Coefficient are also improved by 36.1%/20.0%
and 74.2%/32.2%, respectively.

Next, we explored the effects of lighting conditions that potentially could have a large impact on the performance
of mobile camera-based contactless physiological sensing systems. We conducted three sets of experiments to
examine three different lighting conditions: 1) natural sunlight, 2) incandescent light, and 3) LED light. All the
experiments were conducted on the video recordings collected while the participants were stationary to exclude
confounds from motion. As Table 6 illustrates, in the natural light condition, MobilePhys improves 58.6%/37.8% in
MAE, 44.0%/41.8% in SNR and 68.2%/8.6% in pearson coefficient. In the incandescent light condition, MobilePhys
enhances 46.2%/54.0% in MAE, 66.4%/45.4% in SNR and 54.8%/52.3% in pearson coefficient. In the LED light
condition, MobilePhys enhances 46.6%/43.2% inMAE, 269.3%/173.8% in SNR and 43.1%/15.4% in pearson coefficient.
Besides of different types of lighting conditions, we also evaluated MobilePhys on different lighting intensities
on LED light (e.g., dimmer light). As Table 8 illustrates, in the 55 Lux condition, MobilePhys outperforms the
baseline methods by 32.4%/31.5% in MAE, 21.5%/33.7% in SNR and 520%/9% in the pearson coefficient regarding
the light intensity. In the 110 lux setting, we also observed a similar trend where MobilePhys outperforms both
baseline methods in MAE and Pearson Coefficient. However, in the Lux 220 settings, MobilePhys achieves similar
performance as TS-CAN while MetaPhys failed to generalize well in this setting.

To ensure our proposed system does not have a bias on a specific population or race, we evaluated MobilePhys’s
effectiveness across different skin types as Table 7 shows. In this set of experiments, we combined the subjects from
Xiaomi 8 and iPhone 11 to get more balanced skin distribution across skin types. Results show that MobilePhys
outperforms the baseline methods by 66.6%/31.1% in MAE, 108%/117% in SNR and 63.3%/3.1% in the pearson
coefficient regarding the skin type I and II; 61.3%/45.5% in MAE, 108%/109% in SNR and 8.8%/12.5% in the pearson
coefficient regarding the skin type III and IV; and 72.7%/86.7% in MAE, 15.4%/15.6% in SNR and 44.1%/133% in the
pearson coefficient regarding the skin type V and VI.

6.2 Findings of Mobile Camera Settings
We observed that the Android phone camera settings greatly affected the quality of the video as well as the
overall performance of camera-based physiological sensing. Anecdotally, we observed similar behavior in iPhone.
Therefore, we conducted a systematic analysis on various camera settings on Xiaomi Mi 8 to explore how mobile
camera settings affect the performance of contactless PPG measurement.
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We choose the three most common camera settings that are: auto-white-balance (AWB), exposure time and
sensitivity. Since camera-based physiological sensing systems aim to extract very subtle color changes on the skin,
those settings play a significant role in the RGB values captured by the camera. More explicitly, these settings
together determine the brightness and color of the video and the intake of the light from the camera lens. To
further complicate matters, in video recordings, these parameters are typically changed dynamically and are not
constant for a single video.

In the Android API, two parameters: color correction gains and color correction transform determine the AWB
algorithm. Color correction gains are gains applying to Bayer raw color channels for white-balance, and color
transform is a matrix used to transform the sensor RGB color space to the output linear sRGB color space. These
two values are automatically generated when AWB is on, while in manual mode, users set these two parameters
manually.

We conducted 13 experiments to examine the influence of auto-white-balance, camera sensitivity and exposure
time on the performance of our camera-based physiological sensing system. The experiment procedure and
the results are shown in Table 9. We repeated each experiment five times using the same camera setting, and
the average heart rate MAEs are reported. All the experiments were completed in an hour to ensure that the
lighting conditions were consistent across different experiments. In experiment #1, when auto exposure and auto
white balance are turned on, a sensitivity of 175 exposure time of 1/30s was obtained as typical values and was
used as the basis of the subsequent experiments. Typical color correction gains and color correction transform
values were also obtained in this experiment and used for manual AWB mode. In the experiments #2-#10, auto
exposure was turned off. Moreover, we also explored the sensitivity-exposure time space across nine different
experiments. Experiment #11-#13 adopted the same exposure time and sensitivity as experiment #7, #5 and #8.
The AWB parameters were set manually to see if AWB has a positive impact on the video quality,

In Table 9, the results show a noticeable decrease in averaged MAE when exposure time and sensitivity are
set to a lower value. This indicates that these settings controlled the light admitted by the system and made the
videos relatively darker. Camera-based contactless physiological measurement aims to extract subtle changes (𝛿)
of skin pixels; therefore, making the video too bright could corrupt these subtle signals. However, the averaged
MAE in experiment #10 was increased sharply when we continued lowering the exposure time. This increment
of MAE indicates that forcing the video to be too dark also makes extraction of physiological signals challenging
as some of the individual’s facial details were not even visible. Therefore, we set the exposure time to 1/50 s and
sensitivity to 100 to balance the brightness of videos. As for AWB, in all three experiments where AWB is off,
the average MAE is slightly higher, which indicates that AWB helps capture higher quality of videos for the
camera-based contactless physiological system. These findings in mobile camera settings help our system to get
the best quality of videos recorded by smartphones’ cameras.

Moreover, we also observed similar results on an OPPO Reno 5 smartphone, which suggests that this pattern is
not device-dependent. This may guide future studies to set the proper mobile camera settings for camera-based
contactless physiological sensing.

7 DISCUSSION
In this paper, we demonstrated the feasibility of our proposed mobile personalizing camera-based contactless
physiological sensing system using the power of meta learning, without the need for a clinical-grade sensor. This
is achieved by using both the front and rear cameras on a smartphone to generate high-quality synchronized
self-supervised labels. These labels are then used for training personalized contactless camera-based PPG models.
These personalized models could then be shared with other devices. We foresee the opportunity of future IoT
applications (e.g., smart mirrors or other fitness applications) utilizing the smartphone’s rear camera for a short
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Table 9. Experiments on exploring the effect of smartphone front camera settings on the pulse measurement performance.

Trial No. Duration (s) Auto White Balance Auto Exposure Exposure time (s) Sensitivity MAE (beats/min)
1 30 On On Auto Auto 5.6
2 30 On Off 1/30 175 2.9
3 30 On Off 1/30 100 1.2
4 30 On Off 1/30 250 5.4
5 30 On Off 1/50 175 2.5
6 30 On Off 1/100 175 0.8
7 30 On Off 1/50 250 2.5
8 30 On Off 1/50 100 0.5
9 30 On Off 1/100 250 0.6
10 30 On Off 1/100 100 3.9
11 30 Off Off 1/50 250 3.1
12 30 Off Off 1/50 175 2.8
13 30 Off Off 1/50 100 1.3

calibration of a person’s appearance and environment to personalize the physiological model. In the following
sections, we discuss our major findings, limitation, and future work.

7.1 How Does MobilePhys Compare with the Baseline Methods?
Based on the results shown in Table 4-8 MobilePhys consistently outperforms the baseline methods across the
tasks, with very few exceptions. Specifically, it helps significantly on the motion tasks (e.g., talking and random
head motion) and in measurement across skin types based on Table 4 and Table 7. We find that MobilePhys
achieves similar performance to MetaPhys in the talking and stationary after exercising tasks, but MetaPhys
performs significantly worse than MobilePhys and TS-CAN in the random head motion, incandescent light and
skin type (V+VI) tasks. We believe this is because MetaPhys is highly reliant on the POS method [45] to generate
high-quality pseudo labels, but POS, a signal separation method fails to yield accurate PPG waveform in some of
these more challenging tasks.

7.2 How Does MobilePhys Perform in iOS and Android?
Based on Table 4-8, MobilePhys sees similar performance improvements on both Xiaomi 8 (Android) and iPhone
11 (iOS). These results indicate that MobilePhys has the potential to generalize to different mobile devices. Overall,
we see no reason that the method would not provide benefits on other mobile devices, given that imaging
devices on almost all mid-range and above smart phones have good specifications. However, while there are
improvements over the baselines, we do observe that errors for subjects using the iPhone 11 are higher than
those for subjects using Xiaomi 8. After analyzing the results, we found that there were two reasons causing
this difference: 1) the data from iPhone 11 were collected over the winter quarter; therefore, there was a lower
intensity of natural light in the recording environments than for the Xiaomi 8 data, which was collected over
the spring/summer. It is harder to capture subtle skin pixel changes in low lighting settings. 2) The iPhone 11
data include 5 subjects with skin types V+VI (1 V + 4 VI). Those subjects have higher melanin content in their
skin, which impacts the intensity of light reflected from the body and the amount of light captured by a camera.
Therefore, extracting subtle pixel changes from darker skin type subjects is more challenging [29]. In general,
the iPhone 11 batch is simply a more challenging dataset than the Xiaomi 8 batch. We do not think that these
differences are as much due to the hardware as these other factors.
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7.3 How Do Motion Tasks Impact Camera-based Contactless Physiological Systems?
As Table 4 shows, MobilePhys leads to considerable performance gains on tasks with larger motions (taking and
random head motion). However, despite MobilePhys achieving more than 10% improvement in MAE of the task
of head motion in yaw, it is failed to remove the large noise introduced by the larger motions as the MAE for
this task even after personalization is still quite large. The subjects had larger motion in this task compared to
the talking and random head motion tasks. These results indicate that it is easier for the model to pick up the
personalized features in relatively stationary video frames. Large motions bring extra noise and MobilePhys may
get “confused” about what to learn during the personalization phase. Moreover, UBFC only contains videos of
stationary subjects; therefore, our meta-learner was only trained to learn how to adapt to relatively stationary
tasks. The magnitude of motion was smaller in the tasks of talking and random head motion, than in yaw, and
MobilePhys is able to yield greater improvements on these tasks.

7.4 How Do Lighting Conditions Impact Camera-based Contactless Physiological Systems?
Based on the results in Table 6, MobilePhys yields superior performance on the conditions of natural light and
incandescent light. MobilePhys reduces errors in the videos with incandescent light by approximately 40% on
average across all the subjects. It is not surprising that MobilePhys achieves such results because none of the
videos in AFRL and UBFC are recorded under incandescent lighting and incandescent has a different spectral
composition compared to other lighting (e.g., sunlight), as illustrated in Figure 4. MetaPhys also does not work
well in such complex lighting conditions, as POS was not designed to handle videos with complex lighting
environments. Furthermore, we observe that MobilePhys provides even more benefit for the videos under natural
light. Natural sunlight has a broad spectrum (see Figure 4-A), and we hypothesize that our training data failed to
represent a complete spectrum of natural sunlight. Therefore, performing a few-shot personalization substantially
reduces the error by helping the model adapt to the different spectral profiles.
On the other hand, MobilePhys, MetaPhys and TS-CAN achieved similar performance under LED lighting.

Since our training data (AFRL and UBFC) have a similar lighting spectral profile as the videos we collected under
LED lighting, TS-CAN already performs strongly, showing that there is no need to personalize the model if
the training data includes similar lighting conditions. However, in practice it is unlikely that the exact lighting
conditions will be known at training time.

7.5 How Does Exercise Impact Camera-based Contactless Physiological Systems?
It is clear that MobilePhys achieves better performance than TS-CAN after subjects raise their heart rate by
exercising. Heart rate can be dramatically elevated after exercise. However, most of our training data have a
regular range of heart rate (60 BMP to 80 BMP). MetaPhys also achieves similar performance as MobilePhys
because the task was relatively stationary and under good lighting conditions so that POS was able to generate
good pseudo PPG labels. Our results suggest that personalization is important when camera-based contactless
physiological sensing technologies are deployed in fitness settings.

7.6 How Does Skin-type Impact Camera-based Contactless Physiological Systems?
As Table 7 shows, MobilePhys achieves superior performance, especially in the subjects who have darker skin
types such as VI. It is not surprising that MetaPhys also helps to provide an improvement on subjects of I, II,
III and IV because of the personalization process. However, when it comes to the subjects in categories V+VI,
MetaPhys failed to generalize to these subjects because POS cannot yield reliable pseudo PPG waveforms for the
meta-learner. Previous work has already highlighted this issue with POS [29]. MetaPhys was even beaten by TS-
CAN, and we believe it is because the meta-learner used an inaccurate waveform to generate the personalization
model. On the other hand, MobilePhys was still able to provide nearly 75% improvement compared to pre-trained
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TS-CAN. Through these results, we believe MobilePhys will be specifically useful in improving the equability of
camera-based contactless physiological sensing.

7.7 Limitations
Although MobilePhys demonstrates it is able to achieve superior results in complex conditions, there remain
limitations: (1) During data collection the smartphone was fixed on a stand. This helped us reduce some subtle
motion artifacts. It might be reasonable to ask users to place/hold the phone for 18 seconds during the deployment;
however, it would not be trivial to guarantee that they do so. (2) Although MobilePhys can help reduce the
performance gaps between people with different skin types, there still remains some disparities. As Table 4-8
show, MobilePhys achieved higher errors on the iPhone 11 dataset than Xiaomi 8 dataset. We hypothesize this is
because there are more VI subjects in the iPhone dataset. Our proposed method cannot completely close the
gap, although we believe that our approach is a step in the right direction; (3) We are aware that we have a
non-uniform distribution of skin types in this dataset, and the same is true for many other PPG datasets [29].
Specifically, we only have eight participants with the skin type of VI and V. Recent efforts have been made to
address these imbalances, but these data are not publicly available at this time [4, 25]. We plan to expand our
dataset with better coverage of skin types. (4) Finally, our system was only evaluated on limited daily motion
tasks such as talking, and it is worth collecting more data with more routine activities such as typing, walking,
etc. However, recruitment was challenging during the COVID-19 pandemic and we tried to capture a range of
environments, activities and demographics; (5) The current system requires running a few-shot personalization
process on every single task, which means users need to calibrate the system when they change their environment
or activity.

7.8 Future Work
We are pushing toward more robust and generalizable mobile physiological sensing by demonstrating Mobile-
Phys’s performance on videos with two mobile devices, large head motions, different ambient lighting conditions
and mobile camera settings. However, we conducted our experiments in a lab environment, and simulating
different lighting conditions does not reflect the full diversity of conditions observed in everyday life. To further
enable practical mobile physiological sensing, we would expect future work to study other mobile settings, such
as deploying camera-based contactless physiological sensing in outdoor environments or in a gym. Moreover,
modern smartphones are equipped with advanced cameras such as true-depth, IR cameras. It is also worth
exploring how to leverage these advanced sensors to perform physiological sensing.
We noticed a 1-Hz noise signal that was constantly an issue when we collected the facial videos using the

front RGB camera. We have noticed that this issue is not isolated only to the Xiaomi Mi 8 smartphone model. We
observed the same issues on three other brands of Android smartphones and on iPhone with different camera
specifications. Although we were not fully aware of the reason behind the 1-Hz noise issue, we observed that
it was more likely to occur when the smartphone started to heat up and when using a large ISO setting and
a longer exposure. Therefore, to ensure the quality of the facial videos, it is better to set a smaller ISO, use a
faster shutter. We adopted a cooler and switched smartphones between recordings to ensure the phone did not
overheat. Finally, we double-checked all recordings at the end of each experiment. We re-collected the data if
we observed a significant 1-Hz noise issue in specific recordings. This issue seems to be partially related to the
hardware and not entirely to our processing of the video.

We collected a large multi-modality mobile physiological sensing PPG dataset, which will be released with this
paper. We would expect future work to explore novel contactless or contact physiological sensing methods and
applications using our dataset. We foresee the opportunities of a multi-modality sensing approach (e.g., IMU,
Audio, Ambient light and RGB videos, etc.), contactless PPG measurement using the front IR cameras, computing
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other physiological signals (e.g., respiratory rate or heart rate variability), and other physiological computing
applications.

8 CONCLUSION
Camera-based contactless physiological sensing holds promise for monitoring vital signs and important cardiac
and pulmonary parameters. For example, these systems could provide more comfortable and convenient ways to
screen for arrhythmias and diagnose and monitor atrial fibrillation as well as cardiopulmonary diseases. In this
paper, we present a novel mobile camera-based contactless physiological sensing system called MobilePhys, that
leverages front and back cameras to provide self-supervised “ground truth” labels to our few-shot meta learning
algorithm to perform personalization and environmental adaptation. To validate the robustness of our system,
we also release the first-ever multi-modality mobile remote physiological dataset with different mobile devices,
lighting conditions, motions, activities, and skin types. Our superior results demonstrate our proposed system
substantially improves over the state-of-art system under different contexts. Furthermore, we systematically
examined how camera settings in smartphones impact the performance of camera-based contactless physiological
sensing, which will provide useful guidance for other researchers who are building smartphone-based contactless
physiological sensing systems.
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