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ABSTRACT
There are large individual differences in physiological processes,
making designing personalized health sensing algorithms challeng-
ing. Existing machine learning systems struggle to generalize well
to unseen subjects or contexts and can often contain problematic
biases. Video-based physiological measurement is not an exception.
Therefore, learning personalized or customized models from a small
number of unlabeled samples is very attractive as it would allow
fast calibrations to improve generalization and help correct biases.
In this paper, we present a novel meta-learning approach called
MetaPhys for personalized video-based cardiac measurement for
contactless pulse and heart rate monitoring. Our method uses only
18-seconds of video for customization and works effectively in both
supervised and unsupervised manners. We evaluate our proposed
approach on two benchmark datasets and demonstrate superior
performance in cross-dataset evaluation with substantial reductions
(42% to 44%) in errors compared with state-of-the-art approaches.
We have also demonstrated our proposedmethod significantly helps
reduce the bias in skin type.
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1 INTRODUCTION
The importance of scalable health sensing has been acutely high-
lighted during the SARS-CoV-2 (COVID-19) pandemic. The virus
has been linked to increased risk of myocarditis and other serious
cardiac (heart) conditions [32]. Contact sensors (electrocardiograms,
oximeters) are the current gold-standard for measurement of heart
function. However, these devices are still not ubiquitously available,
especially in low-resource settings. The development of video-based
contactless sensing of vital signs presents an opportunity for highly
scalable physiological monitoring. Furthermore, in clinical settings
non-contact sensing could reduce the risk of infection for vulnera-
ble patients (e.g., infants and elderly) and the discomfort caused to
them [37].

While there are compelling advantages of camera-based sensing,
the approach also presents unsolved challenges. The use of am-
bient illumination means camera-based measurement is sensitive
to environmental differences in the intensity and composition
of the incident light. Camera sensor differences mean that hard-
ware can differ in sensitivity across the frequency spectrum. People
(the subjects) exhibit large individual differences in appearance
(e.g., skin type, facial hair) and physiology (e.g, pulse dynamics).
Finally, contextual differences mean that motions in a video at
test time might be different from those seen in the training data.
One specific example is that there exists biases in performance
across skin types [27]. This problem is not isolated to physiological
measurement as studies have found systematic biases in facial gen-
der classification, with error rates up to 7x higher on women than
men and poorer performance on people with darker skin types [6].
Moreover, there are several challenges in collecting large corpora
of high-quality physiological data: 1) recruiting and instrumenting
participants is often expensive and requires advanced technical
expertise, 2) the data can reveal the identity of the subjects and/or
sensitive health information meaning it is difficult for researchers
to share such datasets. Therefore, training supervised models that
generalize well across environments and subjects is challenging.
For these reasons we observe that performance on cross-dataset
evaluation is significantly worse than within-dataset evaluation
using current state-of-the-art methods [7, 23].

Calibration of consumer health sensors is often performed in
a clinic, where a clinician will collect readings from a high-end
sensor to calibrate a consumer-level device the patient owns. The
reason for this is partly due to the variability within readings from
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consumer devices across di�erent individuals. Ideally, we would
be able to train a personalized model for each individual; how-
ever, standard supervised learning training schemes require large
amounts of labeled data. Getting enough physiological training
data of each individual is di�cult because it requires using medical-
grade devices to provide reliable labels. Being able to generate a
personalized model from a small amount of training samples would
enable customization based on a few seconds or minutes of video
captured while visiting a clinic where people have access to a gold-
standard device. Furthermore, if this process could be achieved
without even the need for these devices (i.e., in an unsupervised
manner), that would have even greater impact. Finally, combining
remote physiological measurement with telehealth could provide
patients' vital signs for clinicians during remote diagnosis. Given
that requests for telehealth appointments have increased more than
10x during COVID-19, and that this is expected to continue into the
future [33], robust personalized models are of growing importance.

Meta-learning, or learning to learn, has been extensively studied
in the past few years [17]. Instead of learning a speci�c generalized
mapping, the goal of meta-learning is to design a model that can
adapt to a new task or context with a small amount of data. Due to
the inherent ability for fast adaption, meta-learning is a good candi-
date strategy for building personalized models (e.g., personalization
in dialogue and video retargeting [20, 24].) However, we argue
that meta learning is underused in healthcare where clinicians can
quickly adapt their clinical knowledge to di�erent patients. The goal
of this work is to develop a meta-learning based personalization
framework in remote physiological measurement with a limited
amount of data from an unseen individual (task) to mimic how a
clinician manually calibrates sensor readings for a speci�c patient.
When meta-learning is applied to remote physiological measure-
ment, there are two kinds of scenarios: 1) supervised adaptation
with few samples of labeled data from a clinical grade sensor and 2)
unsupervised adaptation with unlabeled data. We hypothesize that
supervised adaptation is more likely to yield a robust personalized
model with only a few labels, while unsupervised adaptation may
personalize the model less e�ectively but with much lower e�ort
and complexity.

In this paper, we propose a novel meta-learning approach to
address the aforementioned challenges called MetaPhys. Our con-
tributions are: 1) A meta-learning based deep neural framework,
supporting bothsupervised and unsupervised few-shot adap-
tation, for camera-based vital sign measurement; 2) A systematic
cross-dataset evaluation showing that our system considerably out-
performs the state-of-the-art (42% to 52% reduction in heart rate
error); 3) To perform an ablation experiment, freezing weights in
the temporal and appearance branches to test sensitivity during
adaptation; 4) An analysis of performance for subjects with di�er-
ent skin types. To our best knowledge, MetaPhys is the �rst work
that leverages pseudo labels in training a physiological sensing
model and the �rst unsupervised deep learning method in remote
physiological measurement. Our code, example models, and video
results can be found on our github page.1

1https://github.com/anonymous0paper/MetaPhys

2 RELATED WORK
2.1 Video-Based Physiological Measurement
Video-based physiological measurement is a growing interdisci-
plinary domain that leverages ubiquitous imaging devices (e.g.,
webcams, smartphones' cameras) to measure vital signs and other
physiological processes. Early work established that changes in
light re�ected from the body could be used to capture subtle varia-
tions blood volume and motion related to the photoplethysmogram
(PPG) [35, 36] and ballistocardiogram (BCG) [2], respectively. Video
analysis enables non-contact, spatial and temporal measurement
of arterial and peripheral pulsations and allows for magni�cation
of theses signals [40], which may help with examination (e.g., [1]).
Based on the PPG and BCG signal, heart rate can be extracted
[2, 31]. Subsequent research has shown HRV and waveform mor-
phology can also be obtained from facial imaging data and achieved
high-precision in the measurement of inter-beat-interval [26].

However, the relationship between pixels and underlying phys-
iological changes in a video is complex and neural models have
shown strong performance compared to source separation tech-
niques [7,41,42]. Conventional supervised learning requires a large
amount of training data to produce a generalized model. However,
obtaining a large body of physiological and facial data is compli-
cated and expensive. Current public datasets have limited numbers
of subjects and diversity in regards of appearance (including skin
type), camera sensors, environmental conditions and subject mo-
tions. Therefore, if the subject of interest is not in the training data
or the video is otherwise di�erent, performance can be considerably
degraded, a result that is not acceptable for a physiological sensor.

Lee et al. [19] recognized the potential for meta-learning ap-
plied to imaging-based cardiac pulse measurement. Their method
(Meta-rPPG) focuses on using transductive inference based meta-
learning and a LSTM encoder-decoder architecture which to our
knowledge was not validated in previous work. Instead, our pro-
posed meta-learning framework is built on top of a state-of-the-art
on-device network [23] and aims to explore the potential of both su-
pervised and unsupervised on-device personalized meta-learning.
More speci�cally, Meta-rPPG uses a synthetic gradient genera-
tor and a prototypical distance minimizer to perform transductive
inference to enable self-supervised meta-learning. This learning
mechanism requires a number of rather complex steps with trans-
ductive inference. We propose a relatively simpler mechanism that
is physiologically and optically grounded [23, 39] and achieves
greater accuracy.

2.2 Meta-Learning and Person Speci�c Models
The ability to learn from a small number of samples or observations
is often used as an example of the unique capabilities of human
intelligence. However, machine learning systems are often brittle
in a similar context. Meta-learning approaches tackle this prob-
lem by creating a general learner that is able to adapt to a new
task with a small number of training samples, inspired by how
humans can often master a new skill without many observations
[17]. However, most of the previous work in meta-learning focuses
on supervised vision problems [34, 44] and in the computer vision
literature has mainly been applied to image analysis [21, 38]. Super-
vised regression in video settings has received less attention. One
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of few examples is object or face tracking [8, 28]. In these tasks, the
learner needs to adapt to the individual di�erences in appearance
of the target and then track it across frames, even if the appearance
changes considerably over time in the video. [8] present a matching
network architecture providing the meta-learner with information
in the form of loss gradients obtained using the training samples.

The property of fast adaptation makes meta-learning a good
candidate for personalizing models, it has been used in various
applications such as dialogue agents [24], gaze estimation [16],
sleep stage classi�cation [3], activity recognition [14], and video
retargeting [20]. For example, Banluesombatkul et al. proposed a
MAML-based meta-learning system to perform fast adaption of a
sleep stage classi�cation model using biosignals [3]. More recently,
MetaPix [20] leveraged a meta-learning training schema with a
small amount of video to adapt a universal generator to a partic-
ular background and human in the problem of video retargeting.
Similarly, our proposed meta-learning framework is also capable
of personalizing a universal remote physiological model to a new
person or an environmental setting.

3 METHOD
3.1 Physiological Meta-Learning
In camera-based cardiac measurement, the goal is to separate pixel
changes due to volumetric variations in blood and pulsatile motions
from other variations that are not related to the pulse signal. Exam-
ples of �noise� in this context that might impact the performance
on the task include: changes in the environment (illumination) and
changes in appearance of the subject and motions (e.g., facial ex-
pressions, rigid head motions). A model trained within a traditional
supervised learning regime might perform well if illumination,
non-pulsatile motions, and appearances in the test set are similar
to those in the training set. However, empirical evidence shows
that performance usually signi�cantly degrades from one dataset
to another, suggesting that traditional training is likely to over�t
to the training set to some extent [7]. Therefore, to achieve state-
of-the-art performance in remote physiological measurement on
cross-dataset evaluation, the system should have: 1) a good initial
representation of the mapping from the raw video data to pulse
signal, and 2) a strategy for adapting to unseen individuals and
environments.

To achieve this, we propose a system called MetaPhys (Fig. 1),
an adaptable meta-learning based on-device framework aimed at
e�cient and personalized remote physiological sensing. MetaPhys
uses a pretrained convolutional attention network as the backbone
(described below) and leverages a novel personalized meta-learning
schema to overcome the aforementioned limitations. We adopt
Model-Agnostic Meta-Learning (MAML) [12] as our personalized
parameter update schema. MAML produces a general initializa-
tion as the starting point for fast adaptation to a diverse set of
unseen tasks with only a few training samples. However, applying
MAML to the task of camera-based physiological measurement
has di�erences to many previously explored meta-learning prob-
lems. Existing meta-learning approaches are often evaluated on
classi�cation or some toy regression tasks due to the lack of re-
gression benchmark datasets [17]. Our problem is a non-trivial

vision-based regression task due to the subtle nature of the un-
derlying physiological signal. Algorithm 1 outlines the training
process for MetaPhys, we �rst pretrain the backbone network to
get an initial spatial-temporal representation. Then we treat each
individual as a taskg8. During the training, we split the data into
a support set ( video frames) and a query set ( 0video frames)
for each individual (task). The support set is used to update the
task's parameters and yield a personalized model\ 8. The query
set is used to assess the e�ectiveness of the personalized model
and further update the global initialization\ to make future adap-
tation better. A robust personalized model\ 8 aims to provide a
more accurate attention mask to the corresponding motion branch
and to preform precise physiological measurement for the target
individual as well as the target's environment. During the testing
stage, MetaPhys has the updated global initialization\̂ , and can
generate^\ 8 for each test individual (task) by optimizing the test
support set as^\ g8  \̂ � Ur ^\ L g85(\̂ ). With this training and testing

schema, the robust global initialization̂\ generated from MetaPhys
not only leverages the pretrained representation but also learns
how to adapt to individual and environmental noise quickly.

3.2 Spatial and Temporal Model Architecture
Backbone

Our ultimate goal is a computationally e�cient on-device meta-
learning framework that o�ers inference at 150 fps. Therefore, we
adopt the state-of-the-art architecture (TS-CAN) [23] for remote
cardiopulmonary monitoring. TS-CAN is an end-to-end neural ar-
chitecture with appearance and motion branches. The inputs are
video frames and the output is the �rst-derivative of the pulse esti-
mate. Tensor shifting modules (TSM) [22] are used that shift frames
along the temporal axis allowing for information exchange across
time. This helps capture temporal dependencies beyond consecu-
tive frames. The appearance branch and attention mechanism help
guide the motion branch to focus on regions with high pulsatile
signal (e.g., skin) instead of others (e.g., clothes, hair) (see Fig. 1).
However, we discover empirically that this network does not nec-
essarily generalize well across datasets with di�erences in subjects,
lighting, backgrounds and motions (see Table 1). One of the main
challenges when employing TS-CAN is that the appearance branch
may not generate an accurate mask while testing on unseen subjects
or environments because of the di�erences in appearance of skin
pixels. Without a good attention mask, motions from other sources
are likely to be given more weight, thus damaging the quality of
our physiological estimate.

3.3 Supervised or Unsupervised Learning
We explore both supervised and unsupervised training regimes for
MetaPhys. Supervised personalization may be suitable in clinical
settings that require highly precise adaptation and where there
is access to reference devices. Unsupervised personalization may
be preferable for consumer measurement when convenience and
scalability is of a greater priority and calibration with a clinical
grade device might be di�cult.

For the supervised version of MetaPhys we use the gold standard
reference signal from a �nger PPG or blood pressure wave (BPW)
to train the meta-learner and perform few-shot adaptation when
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Figure 1: We present MetaPhys, an approach for few-shot unsupervised adaptation for personalized camera-based physiolog-
ical measurement models.

testing. In contrast to the supervised version, in the unsupervised
case we use pseudo labels during the training of the MetaPhys
meta-learner and parameter updates rather than the ground-truth
signal from the medical-grade devices. We use a physiologically-
based unsupervised remote physiological measurement model to
generate pseudo pulse signal estimates without relying on gold
standard measurements. More speci�cally, we leverage the Plane-
Orthogonal-to-Skin (POS) [39] method, which is the current state-
of-the-art for demixing in this context. POS calculates a projection
plane orthogonal to the skin-tone, derived based on optical and
physiological principles, that is then used for pulse extraction. In
details, POS can be summarized into four steps: 1) spatial averaging
each frame, 2) temporal normalization within a certain window
size, 3) applying a �xed matrix projection to o�set the specular
re�ections and other noise, 4) band-pass �ltering.

We observe that even though our unsupervised model uses the
POS signal for meta-training, MetaPhys's performance signi�cantly
outperforms POS once trained. As Algorithm 1 illustrates, the
pseudo label generator� produces pseudo labels for both support
frames and 0query frames for adaptation and parameter updates.
We used pseudo labels for the query set ( 0) in training, as we
observed similar empirical results in preliminary testing whether
we used pseudo labels or ground-truth labels.

Algorithm 1 MetaPhys: Meta-learning for physiological signal
personalization

Require: ( : Subject-wise video data
Require: A batch of personalized tasksg where each taskg8 con-

tains N data points from( 8
Require: A pseudo label generator� for unsupervised meta-

learning
1: \  Pre-training TS-CAN on AFRL dataset
2: for each g8 2 g do
3: if Supervisedthen
4:   Sample support frames from videos ofg8 with

ground truth labels
5:  0  Sample 0query frames from videos ofg8 with

ground truth labels
6: else
7:   Sample support frames from videos ofg8 with

pseudo labels from�
8:  0  Sample 0query frames from videos ofg8 with

pseudo labels from�
9: end if

10: \ g8  \ � Ur \ L g85( • \ ), Update the personalized params.
based on indiv. support loss

11: end for
12: \̂  \ � Vr \

P
g8 L g85( 0

g8• \g8), Update the global params.
based on individuals' query loss
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