

GripSense: Using Built-In Sensors to Detect Hand Posture
and Pressure on Commodity Mobile Phones

Mayank Goel1, Jacob O. Wobbrock2, Shwetak N. Patel1
1Computer Science & Engineering

DUB Group
University of Washington
Seattle, WA 98195 USA

{mayank, shwetak}@cs.washington.edu

2The Information School
DUB Group

University of Washington
Seattle, WA 98195 USA

wobbrock@uw.edu

ABSTRACT
We introduce GripSense, a system that leverages mobile
device touchscreens and their built-in inertial sensors and
vibration motor to infer hand postures including one- or
two-handed interaction, use of thumb or index finger, or
use on a table. GripSense also senses the amount of pres-
sure a user exerts on the touchscreen despite a lack of direct
pressure sensors by observing diminished gyroscope read-
ings when the vibration motor is “pulsed.” In a controlled
study with 10 participants, GripSense accurately differenti-
ated device usage on a table vs. in hand with 99.7% accura-
cy; when in hand, it inferred hand postures with 84.3%
accuracy. In addition, GripSense distinguished three levels
of pressure with 95.1% accuracy. A usability analysis of
GripSense was conducted in three custom applications and
showed that pressure input and hand-posture sensing can be
useful in a number of scenarios.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces—graphical user interfaces.
General terms: Design, Human Factors, Experimentation.
Keywords: Touchscreen; situational impairments; mobile;
inertial sensors; gyroscope; hand posture; posture

INTRODUCTION
A typical computer user is no longer confined to a desk in a
relatively consistent and comfortable environment. The
world’s typical computer user is now holding a mobile de-
vice smaller than his or her hand, is perhaps outdoors, per-
haps in motion, and perhaps carrying more things than just
a mobile device. A host of assumptions about a user’s envi-
ronment and capabilities that were tenable in comfortable
desktop environments no longer applies to mobile users.
This dynamic state of a user’s environment can lead to sit-
uational impairments [28], which pose a significant chal-
lenge to effective interaction because our current mobile

Figure 1. (left) It is difficult for a user to perform interactions
like pinch-to-zoom with one hand. (right) GripSense senses
user’s hand posture and infers pressure exerted on the screen
to facilitate new interactions like zoom-in and zoom-out.

devices do not have much awareness of our environments
or how those environments affect users’ abilities [33].
One of the most significant contextual factors affecting
mobile device use may be a user’s hand posture with which
he or she manipulates a mobile device. Research has shown
that hand postures including grip, one or two hands, hand
pose, the number of fingers used, and so on significantly
affect performance and usage of mobile devices [34]. For
example, the pointing performance of index fingers is sig-
nificantly better than thumbs, as is pointing performance
when using two hands versus one hand. Similarly, the per-
formance of a user’s dominant hand is better than that of
his or her non-dominant hand. Research has found distinct
touch patterns for different hand postures while typing on
on-screen keyboards [1]. And yet our devices, for the most
part, have no clue how they are being held or manipulated,
and therefore cannot respond appropriately with adapted
user interfaces better suited to different hand postures.
Researchers have explored various techniques to accom-
modate some of these interaction challenges, like the
change in device orientation due to hand movement [2,15].
But despite prior explorations, there remains a need to de-
velop new techniques for sensing the hand postures with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST	
 ’12,	
 October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.
	

545

which people use mobile devices in order to adapt to pos-
tural and grip changes during use.
In this paper, we present GripSense (Figure 1), a system
that uses a combination of the touchscreen and the built-in
inertial sensors (gyroscope, accelerometer) and built-in
actuators (vibration motors) already present on most com-
modity mobile phones to infer hand postures and pressure.
GripSense detects hand postures over the course of a small
number of interaction steps (e.g., tapping, swiping the
screen). It infers postures like the use of an index finger,
left thumb, right thumb, which hand is holding the device,
or whether the phone is lying on a flat surface. GripSense
performs this sensing by measuring a device’s rotation, tap
sizes, and the arc of swiping motions. GripSense addition-
ally leverages the built-in vibration motors in a new way to
help infer the amount of pressure being applied to the
screen when interacting with the phone, which can be used
to enable alternate interaction techniques with mobile de-
vices that have no additional hardware for pressure sensing.
As an example, GripSense allows users to zoom-in and
zoom-out of maps using pressure input. In addition,
GripSense is able to detect when the phone is being
squeezed, which could be used to quickly silence a phone
while in a pocket. Previous work on hand-posture detec-
tion has leveraged accelerometers for detecting whether a
device is used in a stationary environment, in a hand, on a
table, or in motion [27], and researchers have also used
external sensors for grip detection [9,22,30]. Leveraging
the built-in inertial sensors, vibration motors, and
touchscreen for grip and pressure detection has not, until
now, been explored.
We evaluated GripSense in a controlled study with 10 par-
ticipants. Our findings show that GripSense differentiates
between device usage in hand or on a flat surface with
99.7% accuracy and various hand postures with 84.3% ac-
curacy and, on an average, makes a decision within 5 “in-
teraction steps”—actions taken by the user that give
GripSense information. Based on data collected in our con-
trolled study, we built a three-level pressure detection mod-
el for inferring pressure input. GripSense differentiates
between three levels of pressure with 95.1% accuracy.
Lastly, we also developed three applications that 10 partic-
ipants used in different settings to qualitatively evaluate the
usefulness and usability of GripSense.
The main contributions of this paper are: (1) a new artifact
called GripSense embodying multiple approaches to sens-
ing mobile device hand-postures using only the built-in
sensors present in commodity touchscreen devices; (2) em-
pirical results from an evaluation of GripSense showing
that it robustly detects four postures i.e., single-handed op-
eration with left thumb, with right thumb, two-handed op-
eration with either index finger, and operation on a flat sur-
face; and (3) the accurate sensing of three levels of pressure
applied to the touchscreen using those hand postures.

RELATED WORK
Our work draws motivation from prior research on explor-
ing solutions for making mobile device interactions easier
in different situations and contexts as well as technologies
that understand a user’s interaction behavior to add new
input capabilities to the device.
Situational Impairments and Hand Postures
It has been emphasized by a number of researchers that the
devices need to have knowledge of a user’s context or situ-
ation to provide better support to the user by making inter-
faces intelligent and invisible (e.g., [18,27]). Recent design
approaches have also emphasized this; for example, proac-
tively sensing context is a design principle of ability-based
design [33], which seeks a better match between interfaces
and the abilities of the people who use them. There also has
been extensive research in the domain of activity recogni-
tion to have a better understanding of the context of a user-
in-motion. Choudhury et al. [3] developed a small wearable
device with number of sensors for activity recognition.
Laerhoven and Cakmakci [23] leveraged an accelerometer
attached to a phone for recognizing different user motions
like walking, climbing stairs, etc. Schmidt et al. [27] lever-
aged accelerometers to detect, in addition to user move-
ment, whether a device is held in the hand, is on a table, or
is in a suitcase. GripSense contributes to this research area
by detecting in which hand and in which hand-posture a
device is being used.
Prior to GripSense, others have also proposed techniques
for detecting hand postures. Kim et al. [22] and Harrison et
al. [9] used capacitive touch sensors to differentiate be-
tween numerous grips. Taylor and Bove [30] additionally
leveraged accelerometers to dynamically detect changes in
a user’s grip for improved interactions. Our system, in con-
trast, requires no additional instrumentation of a modern
smartphone to robustly detect handling grips. The main
trade-off for this capability is that the user needs to be in-
teracting with the device for GripSense to make inferences.
Understanding hand posture is important for making devic-
es more intelligent to situational impairments caused by
them. Holz et al. [16] have evaluated systematic error in
target selection due to change in finger posture. Wobbrock
et al. [34] studied a number of hand postures and evaluated
front- and back-of-device finger performance with mobile
devices. A number of researchers [14,21,31] suggest that
although users prefer single-handed operation while using
smartphones, traditional mobile interfaces are designed for
two-handed operation. Karlson et al. [20] studied such in-
terfaces and evaluated how they impede thumb-based us-
age. Azenkot and Zhai [1] found that different hand pos-
tures induced different touch patterns and affected overall
performance while typing on a mobile touchscreen key-
board. AppLens and LaunchTiles [21] attempted to design
interfaces mindful of the limited precision and range-of-
motion of the thumb. GripSense, using only on-device sen-
sors, robustly detects whether a user is using his left thumb,
right thumb, or either index finger to interact with a device.

546

Inertial Sensors and Force Input
Inertial sensors like accelerometers and gyroscopes have
become ubiquitous. Numerous researchers have leveraged
these sensors to improve device performance. Joshi et al.
[19] used them to reduce image blurring due to touch-
induced vibrations while using a camera. WalkType [7]
used on-device accelerometers to adapt smartphones’ key-
boards to users’ walking movements to reduce text entry
errors. Phielipp et al. [25] used accelerometers and the se-
quence of button presses to detect remote control user iden-
tity. GripSense derives motivation from such work and uses
similar sensors to improve mobile device interaction.
There has been long and consistent interest in augmenting
mobile devices with pressure input. Iwasaki et al. [17]
measured typing pressure on laptop keyboards using on-
device accelerometers. Pressure Widgets [26] used a pres-
sure-sensitive stylus for adding pressure-based interactions
to PDAs. Clarkson et al. [4] instrumented a flip-phone with
force sensitive resistors (FSR) to infer continuous pressure
applied by the user. Essl et al. [5] combined FSR with ac-
celerometers and touch size, inferred from the touchscreen,
as a proxy for pressure applied on phone. Force Gestures
[12] added detection of tangential forces in a similar setup
for richer interactions. Unlike GripSense, most of these
efforts required additional device instrumentation.
As with GripSense, there is significant previous work that
does not require custom instrumentation. Hinckley et al.
[14] and Heo and Lee [13] used smartphone accelerometers
to leverage touch-induced vibrations as a proxy for pres-
sure. In contrast with our work, these approaches do not get
a continuous measure of pressure applied by the user. They
provide a coarse proxy of the pressure and only infer the
initial velocity with which a user’s finger strikes the screen.
Although useful in a number of situations, the granularity
and frequency of these inferences is limited. Heo and Lee
[13] also found that the requirement of increased speed-of-
contact results in higher target selection error. We believe
this limitation does not impede GripSense.
Grasping and Squeezable Interfaces
Fitzmaurice et al. [6] coined the term “graspable user inter-
faces.” Such interfaces allow devices to become more con-
text-sensitive and thereby improve “expressiveness or the
communication capacity” of the computer. SqueezeBlock
[8] embodies this idea and demonstrates a device that pro-
vides feedback by varying its “squishiness.” Wimmer et al.
[32] leveraged computer vision and optical fibers to detect
grasping pressure on mobile device surfaces. Harrison et al.
[9] leveraged FSRs to detect squeezing pressure. These
projects required additional device instrumentation to infer
grip pressure. GripSense requires no additional hardware
for its graspable user interfaces and is a completely soft-
ware-enabled solution provided one has a commodity
smartphone. Another software-only solution, one by Stra-
chan and Murray-Smith [29], used muscle tremor as a
proxy for pressure sensing in a squeezable interface.
GripSense uses similar phenomenon and combines it with

motor-induced vibrations to achieve more fine-grained es-
timation of pressure.
DESIGN OF GRIPSENSE
GripSense uses multiple sources of information to detect a
user’s hand posture and the amount of pressure exerted in a
variety of these postures. Among these sources is the data
from device’s built-in gyroscope. In case of hand posture
detection, the gyroscope is used to measure the direction
and amount of rotation of the device in all three axes. For
the detection of exerted pressure, the gyroscope is used to
measure specific damping characteristics of touch- and
motor-induced vibrations. Another source of information is
touchscreen interaction data. In this section, we outline the
concept and theory behind GripSense.

Inference Features Used Sensor
Event

Latency

Table vs.
Hand

Gyroscope (Low frequency in
all axes)

Touch Down 1

Thumb
vs. Index
Finger

Gyroscope (Low frequency in
x- and y axis

Touch Down 3

Swipe Shape Touch Up

Touch Size Touch Down

Left
Thumb
vs. Right
Thumb

Gyroscope (Low frequency in
y-axis

Touch Down 5

Swipe Shape Touch Up

Touch Size Touch Down

Pressure
in hand

Gyroscope (Low Frequency) Touch Down 1

Gyroscope (High Frequency)
+ Motor

Pressure
on table

Gyroscope (High frequency)
+ Motor

Touch Down 1

Squeeze Gyroscope (High frequency)
+ Motor

Held in Hand 0

Table 1. Summary of all inferences made by GripSense and
when and which features were used for each of them.

Inferring Hand Posture
GripSense uses touchscreen interaction and device rotation
information to infer whether the phone is (a) in a user’s left
hand and operated with left thumb, (b) in a user’s right
hand and operated with right thumb, (c) in either hand and
operated with the index finger of the other hand, (d) on a
flat surface, or (e) being only grasped by the user and not
operated. Karlson et al. [21] discussed how limited preci-
sion and extent of the human thumb impedes one-handed
mobile touchscreen interaction. We use this information in
GripSense to detect hand postures. We use a combination
of three features: (1) relative variance in rotation, (2)
change in touch size, and (3) direction of arc for finger
swipes. These features were extracted on a Samsung Nexus
S smartphone running Android OS 2.3.
Rotation of the Device. The first feature is the rotational
movement of the device as the user touches the screen. In a
one-handed interaction, the phone rotates in response to
touches at the top of the screen more than it does to touches
at the bottom of the screen (Figure 2). This is to compen-
sate for the limited range of the thumb; fingers move the
device as the thumb extends to reach the top of the screen.

547

In contrast, touches at the bottom of the screen result in less
angular motion because that area is usually within the
thumb’s range. When the user interacts using their index
finger, there is no difference in the angular motion from
touches at the top or the bottom of the screen. If the device
is on a table then there is no change in any of these parame-
ters before the touch event is registered.

Figure 2. (left) Minimal device rotation in x- and y-axis, and
smaller touch size when the user touches nearby with the
thumb. (center) Significantly more rotation in x- and y- axis and
larger touch size when the far quadrant of the screen is
touched. (right) The shape of the swipe arc in the case of right
thumb. (All of these phenomena are mirror-imaged for the left
thumb.)
To leverage these insights, we store the angular velocities
around the x-axis sampled at 1 kHz from the gyroscope in a
quarter-second buffer. The data in the buffer is passed
through a low-pass filter to isolate the low frequency angu-
lar velocities. We record the last two angular velocities
observed for touches in the top third of the screen and the
bottom third of the screen (determined from a pilot with
four users). If the difference in variance of angular veloci-
ties for touches in the top is five times greater than for
touches in the bottom of the screen, we assumed that it was
thumb-based interaction.
If the difference in the variances does not exceed the
threshold for three consecutive touches, then we bias our
final decision towards selecting “index finger.”
Similarly, when a user holds the phone in their left hand
and interacts with their thumb, touches on the right of the
screen cause more angular motion than touches nearer to
the palm, again because of the compensation for the limited
motion range of the thumb (Figure 2). In the case of the
right hand, more motion is seen from touches on the left of
the screen. If a thumb-based interaction is inferred, we use
a similar approach as before, except now we log the vari-
ance in the y-axis of the gyroscope for touches on the left
third of the screen and the right third of the screen. If the
variance in angular velocity of the last two touches on the
left side is greater than that on the right side, then we as-
sume the phone is in the right hand (left hand if the vari-
ance on the right is greater). Moreover, if the difference in
angular velocities is more than ten times greater in con-
secutive touches, we set a “high confidence flag” which is
used to bias our final decision towards using this feature
(discussed later).

Touch Size. The second feature is based on the change of
size of touch in different regions of the touch screen. We
hypothesize that in one-handed interaction when the user
interacts with the left and right sides of the screen, the size
of the touch changes because of the shape of the thumb and
rotation of the device in the user’s hand. The touch size on
the same side as the thumb will be smaller than the touch
size on the far side away from the thumb (Figure 2).
For this feature, we divide the screen into six (2×3) parts
and keep track of last two touch sizes. Note that the An-
droid platform provides a method to get the touch size on
the screen. This method is supported by most Android
smartphones available in the market. We compare touch
sizes in the left third and right third of the screen for the
same third of the screen height. If the difference in the
mean of the touch sizes is more than 25%, we bias the sys-
tem towards a thumb-based interaction. If the larger tap
size is on the left side, then the system believes it is right
thumb, and vice versa. Moreover, if the difference in touch
sizes is more than 40% for consecutive touches, the heuris-
tic sets a “high confidence flag.” If the difference is less
than 25%, it biases toward index finger-based interaction.
Shape of the Swipe Arc. This feature is only applicable
when the user swipes on the screen. Because of the shape
and position of the thumb, users often draw an exaggerated
arc instead of a relatively straight line. Karlson et al. [21]
observed similar arcs and analyzed how an interface can be
more effective by limiting interaction within this arc. We
use this arc as our “signal” to detect the user’s hand pos-
ture. While using the phone with the index finger there is
no consistent arc. However, with the thumb there is a con-
sistent, exaggerated arc to the right or left depending on
which thumb is being used. Figure 2 shows the arc formed
by the right thumb while performing a bottom-to-top swipe.
A mirror image of this arc will form in the case of the left
thumb.
If the difference in coordinates of the start and end position
of a vertical swipe are more than 5% of the screen resolu-
tion, GripSense biases itself towards one of the two thumb
postures. Even so, we observed that sometimes a thumb-
based swipe does not result in an arc. Instead, the phone
experiences angular motion in the hand. For example, a
right-handed swipe from bottom to top results in a counter-
clockwise rotation. These two phenomena combine to form
a robust heuristic for handling posture detection in the case
of swipes. As with the other two heuristics, the final intra-
heuristic decision is made when the system biases toward
the same posture twice in a row.
Making the Final Decision. If swipes are present, we use
majority voting on the output of each heuristic to decide the
posture. If all three votes disagree, the posture is marked as
“unknown.” In the absence of swipe, a final decision is
made only if both touch size and rotation heuristics agree or
if the “high confidence flag” in one of the heuristics is set.
If both heuristics come up with different decisions, then the
system chooses the heuristic with a “high confidence flag.”

548

If both confidence flags are set or no confidence flags are
set with disagreement, the posture is set to “unknown.”
Detecting Pressure Applied to the Touchscreen
GripSense uses the gyroscope and vibration motor to clas-
sify the user’s touchscreen touches into three pressure cate-
gories: Light, Medium and Heavy. We hypothesize that if
we trigger the built-in vibration motor when a user touches
the screen (similar to what is already done in a number of
smartphones to provide haptic feedback), the user’s hand
absorbs a portion of these vibrations. Our experiments
show that this vibration absorption is proportional to the
amount of pressure being applied to the screen (see Figure
3). This damping effect is measured using the on-device
gyroscope. We primarily look for the damping of vibrations
induced by the vibration motor. We also observed that as
the amount of force exerted by the user on the touchscreen
increases, there is a subtle oscillating motion between the
user’s thumb and the four fingers that rest on the back of
the device (see the low pass signal in Figure 3). Strachan
and Murray-Smith also observed and leveraged this phe-
nomenon [29]. We hypothesize that this oscillation occurs
because the user’s thumb and fingers try to compensate
continually for pressure exerted and this oscillation has
much lower frequency compared to that induced by the
vibration motor. This subtle motion is not dependent on
the vibration motor. In order to make a robust classification
of a user’s touch intensity, we use both of these features.

Figure 3. (top) Gyroscope signal when user presses light, then
hard, then waits for a second and presses hard and soft again.
(middle) The lower frequencies generated from touch-induced
vibrations increase with increase in pressure. (bottom) Motor-
induced vibrations are diminished as the amount of pressure
exerted increases.
The touch-induced vibrations observed in GripSense are
different from those used by prior work [13,14]. This prior
work used exaggerated vibrations observed when a user
“whacks” the phone with higher than usual velocity, mov-
ing the phone backward with respect to the finger stroke.
This backward motion is proportional to the force with
which finger strikes the screen. This technique provides an
effective but coarse proxy of the pressure exerted. In con-
trast, GripSense leverages the subtle shaking of the phone
as a user’s thumb or finger (depending on the posture) and
hand in which the phone is held try to compensate for pres-

sure exerted by each other. An effective combination of
these touch-induced vibrations with damped motor-induced
vibrations give a much more authentic fine-grained and
continuous proxy of pressure exerted on the screen.
We built a custom application on an Android Nexus-S
smartphone, wherein any touch triggered the phone’s built-
in vibration motor. We then gathered angular velocities
around the three axes through the built-in gyroscope with a
1 kHz sampling rate (Figure 3, top). Touch-induced vibra-
tions were obtained by passing the signal through a low
pass filter (Figure 3, middle). The motor-induced vibrations
were obtained by passing the original signal through a high
pass filter (Figure 3, bottom).
It is clear from the bottom plot in Figure 3 that in the case
of a hard press (blue background), there is an exaggerated
damping effect due to vibrations absorbed by the user’s
hand. We quantify this damping using the 90th percentile of
the high-frequency component of the observed signal. For
the low frequency signal, we quantify the movement of the
phone using the signal variance.
Essl et al. [5] have earlier used the size of touch on the
screen as a proxy for pressure exerted, and we also use this
as a feature in our system. Our analysis shows that this fea-
ture alone is a poor measure of pressure (only about 60%
accurate in our pilot study), but when combined with vibra-
tion analysis it can marginally improve performance by
1.4%, on average. Our pilot study also showed that amount
of motor-induced vibrations absorbed by the hand and
thumb or finger was also dependent on the location of
touch on the screen. Hence, we divided screen into a 4×6
matrix in portrait mode and added “touch zone” as another
feature for pressure level classification.
We buffer the gyroscope data at 1 kHz in a 500 ms buffer
and analyze it every 250 ms (Figure 4). The data then pass-
es through low pass and high pass filters and appropriate
variances and 90th-percentiles are calculated. These fea-
tures, along with touchscreen features (zone and size), were
used to classify to pressure level using the Weka machine
learning toolkit. Weka was used to generate J48 Decision
Trees with pruning confidence set to Weka’s default (0.25).

Figure 4. Block diagram of the major components of
GripSense’s pressure detection module. Low frequency vari-
ance, 90th percentile of higher frequencies, touch size and loca-
tion are the features used for classification.
Squeeze and Grasp GesturesUsing similar techniques as for
quantifying pressure exerted on a touchscreen, we imple-
mented a method to detect squeeze or grasp gestures. For
example, imagine quickly silencing a phone while it is still

549

in a pocket or in a purse by squeezing it and without the
need for fully retrieving the phone. Although grasping pro-
vides a significant amount of damping to the motor-
induced vibrations, there was no significant variance in low
frequency component of the gyroscope data; therefore, only
higher frequencies were analyzed and their 90th percentiles
were used as features for Weka’s J48 decision trees.
EVALUATION
Participants
The performance of GripSense was evaluated in a con-
trolled study. Ten participants (6 males, 4 females) ranging
in age from 21 to 32 years (M=26.9, SD=3.6) were recruit-
ed. All participants had more than 10 years of experience
with computers and self-rated as intermediate to expert
computer and smartphone users.
Apparatus
Participants used separate custom Android applications for
posture and pressure detection. These applications were
deployed on a Samsung Nexus S. The device’s angular
velocities were recorded at 1 kHz using the built-in gyro-
scope. The ground truth for pressure detection was obtained
using thin-film force sensitive resistors (FSR), affixed to
the touchscreen. This was only used to train users to exert
different pressures while receiving feedback from the FSR;
it was not used to train any of the algorithms.
Pressure Detection Procedure
Pressure Detection. The machine learning system for pres-
sure detection was modeled and evaluated on data collected
from participants in a 45-minute study each. Participants
were asked to tap the screen using three different and dis-
cernible pressure levels with different hand postures detect-
able by GripSense: (1) thumb-based operation, (2) index-
finger operation, (3) on a table, (4) only held by the user
but not operated. Twenty taps for each pressure level using
each posture were recorded for all participants. Apart from
the taps, the participants were also asked to perform seven
longer, continuous touches lasting 10 seconds each for each
pressure level. These longer touches were recorded because
in our pilot study we realized that low frequency touch-
induced vibrations lasted for nearly 3 seconds and started
attenuating thereafter as the hand became used to the pres-
sure level. Hence we added these gestures in our data col-
lection mode to make for more robust models.
The three different pressure levels were explained to partic-
ipants and they were asked to practice them. The ground
truth from the FSRs was visualized on the screen for feed-
back during training. Once participants were comfortable
entering three distinct levels of pressure, they were intro-
duced to the data collection interface and procedure. Alt-
hough all participants were comfortable distinguishing for
themselves three pressure levels, absolute pressure values
were not uniform and varied across participants. The order
of postures in which data was collected was randomized to
prevent unwanted effects from fatigue.
The procedure for collecting data to evaluate grip pressure
was the same as that for collecting touchscreen pressure.

Participants were asked to grip the device with three vary-
ing intensities. The least pressure was slightly less than
what participants would apply while using their phone in
general. The middle grip pressure was meant to approxi-
mate how participants would normally hold their phones. In
the highest-pressure level, participants were asked to grip
their phones tightly.
The participants were asked to press a button to trigger the
vibration motor. The motor went off 5 seconds after the
button was pressed. This gave user ample time to get the
phone into the correct grip. Then the device vibrated for 10
seconds. Five such tasks were run for each pressure level
and for each participant. Although we collected pressure-
based interaction data for our postures separately, using our
posture-detection heuristics, applications can seamlessly
switch between models for different postures at runtime.
Posture Detection Procedure and Applications
Our heuristics look at different touchscreen interactions
like taps and swipes to infer grip; hence, we developed two
separate custom Android applications to evaluate perfor-
mance. One application, Contact Selection App, used more
swipes than taps; the other, Text Entry App, used only taps.
The 10 participants recruited for pressure detection data
collection also participated in evaluation of these two ap-
plications. These applications were evaluated in a separate
30-minute session.

Figure 5. (left) Contact Selection App. Swipe-intensive applica-
tion that helps to quantify swipe heuristic performance. (right)
Text Entry App. Tap-intensive app helped in evaluating perfor-
mance in absence of swipes. The left area of the screen just
below the text field prompts the user with current hand posture.
The Contact Selection App presented participants with a
list of 100 random names. The investigator asked each par-
ticipant to select 50 of these names in a random order. Par-
ticipants were asked to randomly invite some of the names
to a fictitious party through a dialog box (Figure 5, left).
After every 5 name selections, the app prompted the partic-
ipant to switch postures. The order of postures was ran-
domly generated. The list and dialog box ensured that par-
ticipants performed a good combination of swipes and taps.
The dialog box also ensured participants had a mixture of
taps on both the left and right sides of the screen.
The Text Entry App required only tapping. Participants
were presented with 15 short English language phrases
randomly selected from MacKenzie and Soukoreff’s phrase
set [24]. At the end of each phrase, the application instruct-
ed participants to switch to a new randomly selected pos-
ture (Figure 5, right). The performance analyses for both of

550

these applications and also for pressure detection models
are presented in the next section.
RESULTS
Posture Detection
Accuracy results for posture detection are shown in Figure
6, left. This figure shows the confusion matrix for the three
hand postures while using the Text Entry App. The y-axis
has the actual posture and x-axis has the prediction made by
GripSense. We do not show the performance of detection
of the device being on a table or grasped because it was
relatively straightforward and the accuracy for that detec-
tion was 99.42%.

Figure 6. (left) Confusion matrix for classification of hand pos-
tures using Text Entry App. The x-axis shows the classification
and the y-axis shows the actual posture. (right) Confusion ma-
trix while using the Contact Selection App.
When evaluated using our Text Entry App, GripSense was
able to detect correct posture in 81.11% cases. It made a
decision after about 5 interaction steps. The number of in-
teractions required to make a decision could be decreased
but only at the cost of accuracy. With 5 required interaction
steps, GripSense was able to make a decision often when
the user completed the first word of a phrase.
The performance of GripSense, expectedly, improved fur-
ther while using the Contact Selection App, as it permits
the use of our third heuristic, the shape of the swipe arc.
The accuracy improved to 87.4%. The confusion matrix for
the three hand postures is shown in Figure 6, right. In this
case, GripSense was able to make a decision on hand pos-
ture after about 4 interaction steps.
Pressure Detection
Figure 7 shows the accuracy of GripSense in detecting
pressure exerted on phone in different postures. The partic-
ipants were asked to use three levels of pressure and the
overall accuracy across all postures was 95.05%.

Figure 7. Squeeze gestures performed the best. Reducing the
number of pressure levels to two improved accuracy further.
Errorbars are standard error.

As discussed earlier, inclusion of Android’s built-in touch-
size method as a feature provided marginal improvement in
performance. We performed an analysis to see how much
effect this feature had on the performance of GripSense.
The accuracy of GripSense without touch size was found to
be 93.46%.
It may be that for many applications, two levels of pressure
are adequate so we evaluated performance for two levels of
pressure. As expected, the performance of GripSense’s
pressure detection improved significantly to 97.91%.
We discussed earlier how the touch-induced vibrations at-
tenuate over the duration of the touch. So we collected data
for both taps (momentary touch) and long 10 second touch-
es as well. The long touches facilitate functions like zoom-
ing-in and out of pictures, maps, etc. During our pilot study
we realized that different users have different ways of hold-
ing the phone and have different types of hands. Hence, we
developed personalized pressure classification models for
all participants. This meant that participants had to take part
in a relatively long data collection study. So we investigat-
ed how much data was enough to train the system for ac-
ceptable levels of accuracy.
Figure 8 shows the progression of improvement in the av-
erage accuracy of GripSense to sense three distinct levels
of pressure as we increase the amount of data used for de-
velopment of models. The investigation has been divided
into different accuracies for different tap and continuous
gestures in variety of postures. The x-axis shows the per-
centage split in training and test data. Larger values on the
x-axis signify more training data. It is clear from the figure
that in the case of long continuous touches, GripSense does
not require a lot of training data. Even for momentary taps,
in total, only 20 taps were recorded for each pressure level.
In most cases, the classification accuracy reaches above
80% by the 30% split mark, meaning that only six taps for
each pressure level are required to train a device per user.

Figure 8. Improvement in average accuracy of pressure level
detection for different gestures and touch-types with increasing
size of training data. Continuous touches reached maximum
performance with significantly less training data.
APPLICATIONS FOR PRESSURE DETECTION
To put GripSense through its paces, we implemented sepa-
rate Android applications to take advantage of GripSense’s
posture- and pressure-sensing techniques. Our applications
were motivated from the challenges associated with situa-

85	

90	

95	

100	

 Thumb	
 Finger	
 Table	
 Squeeze	

3	
 Levels	

2	
 Levels	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

5	
 10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	

Ac
cu
ra
cy
	
 (%

)	

Training Data (%) !

Squeeze!
Thumb Continuous!
Finger Continuous!
Table Continuous!
Thumb Tap!
Finger Tap!
Table Tap!

551

tional impairments [28] and the question of how interfaces
may accommodate using only one hand, having one’s de-
vice in a bag or purse, having limited screen space, etc.
The Maps Application
There are circumstances where it is difficult to use multiple
fingers on a mobile device. Users often do not have both
hands available for interaction. To explore these circum-
stances, we developed a map application in which user
could zoom in by pressing harder on the screen, and could
lightly press to zoom out. Hinckley et al. [14] have devel-
oped a similar application where they used hard and soft
onset of taps for similar interactions. As noted previously,
our approach differs because we do continuous pressure
monitoring, not just detection of pressure at touch-onset,
and therefore, our users do not have to impact the screen
with increased velocity.
In order to assess the usability of our Maps app, we pre-
sented participants with a fully zoomed-out view of a world
map and asked them to zoom-in to a set location (e.g.,
Mexico). The participants needed to zoom in until they
could see street names, and then they had to zoom-out until
they could see the entire country again. To mimic a situa-
tional impairment, we required participants to hold a coffee
mug in one hand and operate the device in their other hand.
We also asked participants to perform same task on an app
that did not have pressure-based input capabilities, and they
had to use pinch-to-zoom to interact with the map using
only one hand. After completion of a task on each system,
we asked participants to make Likert-scale ratings based on
the NASA TLX perceived workload index [10,11]. All 10
participants preferred using GripSense’s pressure-sensitive
maps, as it was much easier to navigate the map with one
hand using pressure input to zoom in and out than to use
one hand with pinch-to-zoom. On average, the GripSense-
based app did better than traditional maps app on all counts
on the Likert scale (Figure 9). A number of participants
also liked the fact that the focal point of the zoom did not
move while using pressure-based input, which is usually
not the case with pinch-to-zoom implementations.

Figure 9. Perceived workload ratings show the GripSense-
based applications resulted in relatively low workload. Lower
ratings are better. Error bars are standard error.

The Keyboard Application
One obvious utility of having pressure-based input is alter-
native input. Researchers have used similar input modali-
ties for mimicking right-clicks [14], changing keyboard
modes [4], and so on. We use pressure input information to
change letter case on a touchscreen keyboard. Users can
press harder to enter uppercase letters and press lighter to
enter lowercase letters. Participants were presented with 5
phrases randomly selected from the MacKenzie and Souko-
reff phrase set [24]. Forty percent of characters in each of
these phrases were randomly converted to upper case. We
also presented participants with a parallel app having the
same interface and task, with the only difference being an
absence of pressure-based input. Instead, the app had a sep-
arate shift key for uppercasing letters.
The keyboards in both apps were modified to not show any
typing errors if participants pressed within three keys of the
intended key. We made this choice because the aim of this
application was not to measure the user’s typing accuracy,
but to measure GripSense’s pressure-detection accuracy.
Participants were asked to use this app while holding the
device in one hand and interacting with the index finger of
the other hand.
After the completion of tasks on each of the two keyboards,
we asked participants to fill out the same Likert scales as
for the Maps app. The difference in performance of the two
keyboards was not as dramatic as it was in case of the Maps
app. Nonparametric Wilcoxon signed-rank tests indicate
that our Keyboard application required significantly less
perceived workload on the temporal and frustration Likert
scales (p<.05). Responses for effort showed a trend in favor
of our Keyboard application (p=.07). Responses for the
mental, physical, and performance scales were not signifi-
cantly different.
The participants were divided on which keyboard they
thought allowed them to type faster. For example, P4 said,
“[GripSense] felt like it took a lot less time to enter the text
because I did not have to keep switching modes.” Whereas,
P7 said, “While using the pressure one I felt that typing
was slower. I had to think more.” A Shapiro-Wilk W test of
normality indicates the Time measure differs significantly
from normal (W=0.95, p<.01). However, a Kolmogorov’s
D test indicates the Time data does not depart significantly
from lognormal (D=0.07, p=.15). Therefore, we log-
transformed our Time measure before running a repeated
measures ANOVA. Although the mean time taken for
GripSense was a little less on average than the traditional
Shift-based keyboard (14.98 s, SD=5.29 vs. 16.31 s,
SD=4.55), the difference was not statistically significant
(F1,6=2.69, p=.15).
Squeeze Application
We developed a fake phone ringer app to check the utility
of our squeeze gesture. This application plays a ringtone
and goes into silent mode when user squeezes the device.
This application was tested by asking participants to keep
the phone in their pocket or bag and once the app starts

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

 Default
Keyboard!

 GripSense
Keyboard!

!
Norm.Maps!

 GripSense
Maps!

 Squeezable
Ringer!

W
or

kl
oa

d
R

at
in

g
(/2

0)
!

Mental! Physical! Temporal! Performance! Effort! Frustration!

552

ringing, to reach inside the bag or pocket and squeeze the
device. This squeeze action sends the device into silent
mode and mimics the behavior of sending the caller to
voicemail.
As is evident from the Likert-scale measures, participants
frankly loved this application. Many wanted it on their per-
sonal phones immediately. P7 said, “There was something
satisfying about squeezing the phone and having the vibra-
tion stop instantly.” P1 said, “When can I get this? This is a
really cool feature that I think would be very useful in all
kinds of contexts.”
DISCUSSION
GripSense successfully infers a user’s hand postures and
pressure exerted on device in these postures with high ac-
curacy. But, there is slight degradation in the performance
of GripSense when deciding between left-handed thumb-
based operation and index finger-based operation. We be-
lieve this degradation is due to the system confusing one-
handed and two-handed operation. This problem is mitigat-
ed to a large extent in the swipe-heavy application, Contact
Selection App. In the case of the keyboard application, the
user’s interaction was largely limited to the bottom half of
the screen and our current heuristics depend on analyzing
differences in device movement when interacting with dif-
ferent parts of the screen. We believe this degradation
would not be felt in real world applications that require
users to interact with various parts of screen and hence pro-
vide much richer data for the algorithms presented in this
paper. However, the keyboard app provides ample interac-
tion switching between the left and right sides of the
screen, so GripSense’s performance is not dramatically
affected.
Extended use of the touchscreen, gyroscope, and vibration
motor can have significant power implications. But
GripSense only leverages these sensors when the device is
interacted with. We did not do a direct analysis of energy
use, but anecdotally we did not observe any significant
reduction in battery life during our user studies. If needed,
future iterations of such system could employ a multistage
approach by sampling at a low frequency first and then
higher rates, as needed.
Because GripSense uses the vibration motor to sense the
pressure exerted, the motor is triggered only when the user
interacts with the touchscreen or in case of an infrequent
event (e.g. incoming voice call). We explicitly asked partic-
ipants about the effects of vibration on their experience
with the system. The majority of participants did not feel
that their experience deteriorated due to this vibration. Sig-
nificantly lower levels of frustration in our exit survey after
using GripSense-based applications also support this find-
ing.
We implemented our algorithms on a Samsung Nexus S
running the Android OS. Although the basic premise would
remain the same, our pressure detection algorithms might
need to be adjusted somewhat for different phones because
of different physical characteristics. The variability of the

sampling rate and resolution of different devices may also
require algorithmic adjustments on some phones. Current
inertial sensors present on commodity mobile devices are
not high resolution and the techniques presented in this
paper can benefit a great deal from improved resolution.
The high performance exhibited by GripSense, particularly
in the case of pressure detection, could be even better with
improved sensor hardware in the future.
Our use of the built-in motor to produce vibration means
that almost half of our features are coming from a relatively
high-frequency source. Hence, techniques presented here
for pressure detection do not suffer from the usual limita-
tions of inertial sensor-based techniques like the presence
of external sources of vibration, etc. Although no formal
study was conducted to measure the effects due to external
vibrations, an informal test was conducted to estimate the
efficacy of pressure sensing while sitting as well as walk-
ing; results were comparable for both postures. In the case
of posture detection, the combination of inertial (gyro-
scope) and non-inertial (touchscreen) sensors should help
mitigate this issue.
As demonstrated by our results, the combination of touch-
induced and motor-induced vibrations means that these
techniques can be reliably implemented when the device is
on a flat surface. Hence these algorithms can be ported to
tablets as well, which are used relatively more on a desk
when compared to a smart phone. Modern game controller
manufacturers can also leverage these techniques with a
simple software upgrade to add pressure sensitivity to their
devices, as game controllers already have vibration motors
and inertial sensors.
In our evaluation of pressure sensing in a variety of pos-
tures, we only had three levels of pressure. Three levels
were chosen to make it easy for users to discern different
pressure levels with acceptable levels of accuracy. We be-
lieve our algorithms actually can infer more than three lev-
els of pressure, amply demonstrated by the fact that even
though the range of pressure applied by different partici-
pants was different, the system maintained high levels of
accuracy. That said, a more continuous regression to pres-
sure is possible and algorithms can be built on top of this
work that have more than just quantized levels of pressure.
CONCLUSION
The dynamic usage environments of mobile devices can
lead to situational impairments that may be overcome with
better device awareness and enhanced interaction tech-
niques. In this paper, we presented GripSense, a system that
leverages various capabilities of mobile devices like the
touchscreen, inertial sensors, and the vibration motor to
infer users’ hand postures and the amount of pressure ex-
erted on device in these postures. GripSense differentiates
between device usage in-hand or on a flat surface with
99.7% accuracy and various hand postures with 84.3% ac-
curacy and, on average, makes a decision within 5 “interac-
tion steps”. GripSense differentiates between three levels of
pressure on different areas of the device with 95.1% accu-

553

racy. A controlled study with 10 participants qualitatively
evaluated the desirability of GripSense with the help of
three custom applications. Users reported lower perceived
workload ratings for GripSense-based applications than for
conventional alternatives. GripSense represents an im-
portant step in extending the capabilities of our mobile de-
vices to be more aware, responsive, and useful.
ACKNOWLEDGEMENTS
We thank Peter Hornyack for his help in prototyping.
REFERENCES
1. Azenkot, S. and Zhai, S. Touch Behavior with Different

Postures on Soft Smartphone Keyboards. Proc. Mobile
HCI 2012, (2012).

2. Cheng, L.-P., Hsiao, F.-I., Liu, Y.-T., and Chen, M.Y.
iRotate: Automatic Screen Rotation based on Face Orien-
tation. Proc. CHI 2012, (2012).

3. Choudhury, T., Consolvo, S., Harrison, B., et al. The Mo-
bile Sensing Platform: An Embedded Activity Recognition
System. Pervasive Computing, IEEE 7, 2 (2008), 32-41.

4. Clarkson, E.C., Patel, S.N., Pierce, J.S., and Abowd, G.D.
Exploring Continuous Pressure Input for Mobile Phones. .

5. Essl, G., Rohs, M., and Kratz, S. Use the Force (or some-
thing) - Pressure and Pressure- Like Input for Mobile Mu-
sic Performance. Organised Sound, June (2010), 15-18.

6. Fitzmaurice, G.W., Ishii, H., and Buxton, W.A.S. Bricks:
Laying the foundations for graspable user interfaces. Proc.
CHI 1995, ACM Press/Addison-Wesley Publishing Co.
(1995), 442-449.

7. Goel, M. and Findlater, L. WalkType: Using Accelerome-
ter Data to Accommodate Situational Impairments in Mo-
bile Touch Screen Text Entry. Proc. CHI 2012, (2012).

8. Gupta, S., Campbell, T., Hightower, J.R., and Patel, S.N.
SqueezeBlock: using virtual springs in mobile devices for
eyes-free interaction. Proc. UIST 2010, ACM (2010), 101-
104.

9. Harrison, B.L., Fishkin, K.P., Gujar, A., Mochon, C., and
Want, R. Squeeze me, hold me, tilt me! An exploration of
manipulative user interfaces. Proc. CHI 1998., ACM Press
(1998), 17-24.

10. Hart, S.G., California, M.F., and Staveland, L.E. Devel-
opment of NASA-TLX (Task Load Index): Results of Em-
pirical and Theoretical Research. .

11. Hart, S.G. Nasa-Task Load Index (NASA-TLX); 20 Years
Later. Proc. of the Human Factors and Ergonomics Socie-
ty Annual Meeting 50, 9 (2006), 904-908.

12. Heo, S. and Lee, G. Force gestures: augmented touch
screen gestures using normal and tangential force. Proc.
CHI EA 2011, ACM (2011), 1909-1914.

13. Heo, S. and Lee, G. Forcetap: extending the input vocabu-
lary of mobile touch screens by adding tap gestures. Proc.
Mobile HCI 2011, ACM (2011), 113-122.

14. Hinckley, K. and Song, H. Sensor synaesthesia: touch in
motion, and motion in touch. Proc. CHI 2011, ACM
(2011), 801-810.

15. Hinckley, K., Pierce, J., Sinclair, M., and Horvitz, E. Sens-
ing techniques for mobile interaction. Proc. UIST 2000,
ACM (2000), 91-100.

16. Holz, C. and Baudisch, P. Understanding touch. Proc. CHI
2011, ACM (2011), 2501-2510.

17. Iwasaki, K., Miyaki, T., and Rekimoto, J. Expressive typ-
ing: a new way to sense typing pressure and its applica-
tions. Proc. CHI EA 2009, ACM (2009), 4369-4374.

18. Johnson, P. Usability and mobility; interactions on the
move. First Workshop on Human-Computer Interaction
with Mobile Devices. (1998).

19. Joshi, N., Kang, S.B., Zitnick, C.L., and Szeliski, R. Image
deblurring using inertial measurement sensors. ACM
Transactions on Graphics 29, 4 (2010), 30:1-30:9.

20. Karlson, A.K. and Bederson, B.B. Understanding Single-
Handed Mobile Device Interaction. 2006.

21. Karlson, A.K., Bederson, B.B., and SanGiovanni, J. Ap-
pLens and launchTile: two designs for one-handed thumb
use on small devices. Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, ACM
(2005), 201-210.

22. Kim, K.-E., Chang, W., Cho, S.-J., et al. Hand Grip Pattern
Recognition for Mobile User Interfaces. Proc. AAAI’06,
(2006).

23. Van Laerhoven, K. and Cakmakci, O. What shall we teach
our pants? Wearable Computers, The Fourth International
Symposium on, (2000), 77-83.

24. MacKenzie, I.S. and Soukoreff, R.W. Phrase sets for eval-
uating text entry techniques. Proc. CHI EA 2003, ACM
(2003), 754-755.

25. Phielipp, M., Lee, R., and Hightower, J. Fast , Accurate ,
and Practical Identity Inference Using TV Remote Con-
trols. Artificial Intelligence, (2010), 1827-1832.

26. Ramos, G., Boulos, M., and Balakrishnan, R. Pressure
widgets. Proc. CHI 2004, ACM (2004), 487-494.

27. Schmidt, A., Aidoo, K., Takaluoma, A., Tuomela, U., Van
Laerhoven, K., and de Velde, W. Advanced Interaction in
Context. In H.-W. Gellersen, ed., Handheld and Ubiqui-
tous Computing. Springer Berlin / Heidelberg, 1999, 89-
101.

28. Sears, A., Lin, M., Jacko, J., and Xiao, Y. When Comput-
ers Fade Pervasive Computing and Situationally-Induced
Impairments and Disabilities. HCI International 2, (2003),
1298-1302.

29. Strachan, S. and Murray-Smith, R. Muscle Tremor as an
Input Mechanism. Proc. UIST 2004, (2004).

30. Taylor, B.T. and Bove Jr., V.M. Graspables: grasp-
recognition as a user interface. Proc. CHI 2009, ACM
(2009), 917-926.

31. Weberg, L., Brange, T., and Hansson, A.W. A piece of
butter on the PDA display. Proc. CHI EA 2001, ACM
(2001), 435-436.

32. Wimmer, R. FlyEye: grasp-sensitive surfaces using optical
fiber. Proc. of TEI'10. ACM (2010), 245-248.

33. Wobbrock, J.O., Kane, S.K., Gajos, K.Z., Harada, S., and
Froehlich, J. Ability-Based Design: Concept, Principles
and Examples. ACM Transactions on Accessible Compu-
ting 3, 3 (2011), 9:1-9:27.

34. Wobbrock, J.O., Myers, B.A., and Aung, H.H. The per-
formance of hand postures in front- and back-of-device in-
teraction for mobile computing. International Journal of
Human-Computer Studies 66, 12 (2008), 857-875.

554

