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Abstract

Learned speech representations can drastically improve perfor-
mance on tasks with limited labeled data. However, due to their
size and complexity, learned representations have limited utility
in mobile settings where run-time performance can be a signifi-
cant bottleneck. In this work, we propose a class of lightweight
non-semantic speech embedding models that run efficiently on
mobile devices based on the recently proposed TRILL speech
embedding. We combine novel architectural modifications with
existing speed-up techniques to create embedding models that
are fast enough to run in real-time on a mobile device and ex-
hibit minimal performance degradation on a benchmark of non-
semantic speech tasks. One such model (FRILL) is 32x faster
on a Pixel 1 smartphone and 40% the size of TRILL, with an
average decrease in accuracy of only 2%. To our knowledge,
FRILL is the highest-quality non-semantic embedding designed
for use on mobile devices. Furthermore, we demonstrate that
these representations are useful for mobile health tasks such as
non-speech human sounds detection and face-masked speech
detection. Our modelﬂ and codeE| are publicly available.

Index Terms: Knowledge Distillation, Representation Learn-
ing, Efficient, On-device

1. Introduction

Representation learning is a powerful tool for leveraging large
collections of unlabeled data to learn better supervised models
when labels are scarce [1, 2 3]. Shor et al. recently proposed
the "NOn-Semantic Speech Benchmark” (NOSS) for evaluat-
ing the quality of universal speech representations [4]. NOSS
includes a diverse set tasks such as emotion recognition [} 6],
speaker identification [7]], language identification [8]], and key-
word detection [9], and is designed to encourage the develop-
ment of non-semantic speech embeddings. Shor [4] also pro-
poses a baseline representation named TRIpLet-Loss Network
(TRILL), which performs best over all NOSS benchmark tasks
and achieves state-of-the-art results in some.

Many of the tasks in the NOSS benchmark, such as key-
word detection and speaker identification, have natural mobile
computing applications (e.g. verifying a user and triggering a
voice assistant). On a mobile device, a non-semantic speech
embedding could be used as input features for several real-time
audio detection tasks, considerably reducing the cost of running
models simultaneously. Such an embedding could enable mo-
bile devices to listen for additional events such as non-speech
health sounds (e.g. coughing, sneezing) with minimal impact

Ihttps://tfhub.dev/s?gq=nonsemantic-speech-be
nchmark$2Ffrill

“https://github.com/google-research/google-re
search/tree/master/non_semantic_speech_benchmark

on battery performance. This is desirable as real-time analy-
sis of mobile audio streams has shown to be useful for tracking
respiratory symptoms [10L[11}[12].

However, TRILL is based on a modified version of
ResNet50 [13]], which is expensive to compute on mobile de-
vices. The TRILL authors addressed this by distilling TRILL to
a student model comprised of a truncated MobileNet architec-
ture [14]] and two large dense layers (TRILL-Distilled), which
showed minimal performance degradation on most NOSS tasks.
Due to the size of its final dense layers, TRILL-Distilled con-
tains over 26M parameters, which is still too large to run in
real-time on many devices.

In this work, we address this gap by creating non-semantic
speech embeddings that are fast and small enough to run in real-
time on mobile devices. To do this, we use knowledge distilla-
tion [[15]] to train efficient student models based on MobileNetV3
[16] to mimic the TRILL representation. We apply a combi-
nation of novel architectural modifications and existing speed-
up techniques such as low-rank matrix approximation [17, [18]]
and weight quantization [[19] to further optimize student embed-
dings. Finally, in addition to the NOSS benchmark, we assess
the quality of our embeddings on two privacy-sensitive, health-
sensing tasks: human sounds classification [20] and face-mask
speech detection [21]. In summary, our main contributions are:

1. Create a class of non-semantic embedding models that
are fast enough to run in real-time on a mobile device.
One model, which we name FRILL, is 32x faster and
40% the size of TRILL, with an average decrease in ac-
curacy of only 2% over 7 diverse datasets. FRILL is 2.5x
faster and 35% the size of TRILL-distilled.

2. Evaluate the impact of performance optimization tech-
niques like quantization-aware training, model compres-
sion, and architecture reductions on the latency, accu-
racy, and size of our embedding models.

3. Benchmark our on-device representations on two
mobile-health tasks: a public dataset of human sounds,
and detecting face-masked speech.

2. Student Model Architecture

Our student models map log Mel-spectrograms to an embed-
ding vector and are trained to mimic the TRILL representation.
The student model architecture consists of two components: a
MobileNetV3 variant (see [2.1) followed by a fully-connected
bottleneck layer. MobileNetV3 extracts rich information from
inputted log Mel-spectrograms and the bottleneck layer ensures
a fixed embedding size. To explore the tradeoff between the
performance and latency of our student models, we propose and
vary a set of hyperparameters which we describe below.
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2.1. MobileNet Size

MobileNetV3 was officially released in two sizes: Small
and Large. The small variant is targeted toward resource-
constrained applications and contains fewer inverted residual
blocks and convolutional channels. In addition to the official
sizes, we propose a truncated version of MobileNetV3Small
which we name MobileNetV3Tiny. It features the following
modifications:

* We remove two of the eleven inverted residual blocks
(blocks 6 and 11) from MobileNetV3Small. These blocks
were chosen because they are duplicates of the preceding
block.

¢ We reduce the number of channels in the final convolu-
tional layer from 1024 to 512.

See Table 2 in [[16] for a full specification of MobileNetV3Small.

2.2. MobileNet Width

MobileNet architectures feature a width multiplier o which
modifies the number of channels in the convolutional layers
within each inverted residual block. This hyperparameter is
commonly used to exchange model latency for performance and
has been included in other efficient neural network architectures
[22]]. The values of @ we explore are shown in Tablem

2.3. Global Average Pooling

MobileNetV3 produces a set of two-dimensional feature maps
at its output. When global average pooling (GAP) is disabled,
these features maps are flattened, concatenated, and passed to
the bottleneck layer to produce an embedding. This concate-
nated vector is large, resulting in a sizeable kernel in the bottle-
neck layer. GAP can be used to reduce the size of the bottleneck
layer kernel by taking the global average of all "pixels” in each
output feature map, thus reducing the size of the bottleneck in-
put. Our intuition for doing this is that GAP discards temporal
information within an input audio window, which is less impor-
tant for learning a non-semantic speech representation due to
the fact non-lexical aspects of the speech signal (e.g. emotion,
speaker identity) are more stable in time compared to lexical
information.

2.4. Bottleneck Layer Compression

A significant portion of our student model weights are located
in the kernel matrix of the bottleneck layer. To reduce the foot-
print of this layer, we apply a compression operator based on
Singular Value Decomposition (SVD) that learns a low-rank ap-
proximation of the bottleneck weight matrix Similar to
[18], we aim to learn the low-rank approximates during train-
ing as opposed to post-training. Formally, this operator uses
SVD to create matrices U and V' such that the Frobenius norm
of W — UVT is minimized. The compressed kernel replaces a
matrix of m x n weights with k(m + n) weights, where & is a
hyperparameter that specifies the inner dimension of U and V/,
which we fix at k = 100 for this study. A convex combination
of original and compressed kernels is used during training to
produce the following layer output:

y=z(AW 4+ (1 -XNUV)+b (1)

3https://github.com/google-research/google-re
search/tree/master/graph_compression

Table 1: Model hyperparameters for reducing size and latency.

Name Description Values
MV3Size MobileNetV3 size tiny, small, large
MV3Width MobileNet width ?52’50]7 .55” 12%’
GAP Global average pooling yes, no
Compression  Bottleneck compression yes, no
QAT Quantization-aware training yes, no

where b is the bias vector in the bottleneck layer, x is the
input vector, and A is a scalar that is set to one at the beginning
of training and linearly decreases to zero over the first ten train-
ing epochs. Varying A helps the optimizer transition to learning
the weights of the compressed matrices. At inference time, A is
explicitly set to O and the original kernel is discarded.

2.5. Bottleneck Layer Quantization

Quantization aims to reduce model footprint and latency by re-
ducing the numerical precision of model weights. Instead of
using post-training quantization which can cause performance
degradation, we use Quantization-Aware Training (QAT), a pro-
cedure which gradually quantizes model weights during train-
ing. We use the Tensorflow implementation of QAT to quantize
the bottleneck layer kernel from 32-bit floating point to 8-bits,
which is based on the quantization scheme described in [19].

3. Experiments

We conduct a study to determine the effect of each hyperparam-
eter in Table [T] on the representation quality, latency, and size
of our student embedding models. For each of 144 combina-
tions of hyperparameters, we distill the TRILL embedding to a
student network, benchmark the student embedding by training
simple classifiers to solve NOSS tasks and health tasks using
embeddings as input features, and measure inference latency on
a Pixel 1 smartphone. The distillation dataset, student network
training procedure, NOSS benchmarking, and latency bench-
marking procedures are described in the following sections.

3.1. Distillation Dataset

To build our dataset for distillation, we randomly sample a 0.96-
second audio context from each Audioset [23|] speech clip and
compute a log-magnitude Mel spectrogram using a Short-Time
Fourier Transform (STFT) window size and window stride of
25ms and 10ms respectively. We compute 64 Mel bins. Us-
ing each spectrogram, we compute the layerl9 output of the
TRILL model, as was done in [4]. Each {log Mel spectrogram,
layer19} pair is stored as a single observation for distillation
training. Because some YouTube videos were unavailable at
the time of this study, we were only able to procure 902,523
clips, which accounts for 89.2% of the published speech subset.

3.2. Student Model Training

Student models are trained to map input spectrograms to
the layerl9 representation produced by TRILL. Because the
layer19 vector is much larger (12288d) than our student em-
beddings (2048d), we append an equal-length fully-connected
layer to the output of the student model. This layer allows us to
take a mean-squared-error loss against layerl9. A diagram of
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Figure 1: Knowledge distillation for non-semantic speech em-
beddings. The dashed line shows the student model’s output.

our training setup is shown in Figure[l] To train student models,
we use a batch size of 128 and an initial learning rate of le-4
with the Adam optimizer [24]. We use an exponential learning
rate schedule, with learning rates decreasing by a factor of 0.95
every 5,000 training steps. Each model trains for 50 epochs, or
approximately 350,000 training steps.

3.3. NOSS Benchmark Analysis

To evaluate the quality of our student embeddings, we train a
set of simple classifiers using embeddings as input features to
solve each classification task in the NOSS benchmark. As de-
tailed in [4], for each dataset in NOSS, we train a logistic re-
gression, random forest, and linear discriminant analysis clas-
sifier using the SciKit-Learn library [23]. Embeddings for each
utterance are averaged in time to produce a single feature vec-
tor. For tasks that contain multiple observations per speaker
(SpeechCommands, CREMA-D, SAVEE) we also train a set of
classifiers using L? speaker normalization, as in [4]]. We report
the best test accuracy across combinations of downstream clas-
sifiers and normalization techniques. Accuracies on Dementia-
Bank [26], one of the datasets included in the original NOSS
benchmark, were all within 1% of each other, so we excluded it
from our analysis in Section ]

3.4. Mobile Health-Sensing Tasks

In addition to tasks in the NOSS benchmark, we evaluate Trill,
Trill-Distilled, and each of our student models on a human
sounds classification task and a face-mask speech detection
task. The human sounds task is derived from the ESC-50 dataset
[20]], which contains 5-second sound clips from 50 classes. The
human sounds subset of this dataset constitutes 10 of the 50
classes and includes labels such as ’coughing’, ’sneezing’, and
’breathing’. Similar to NOSS, we train a set simple classifiers
using input features from each student model and report test ac-
curacy on the best model. We use the first four published folds
of ESC-50 for training, and the fifth for testing.

The objective of the mask speech task is to detect whether
1-second speech clips are from masked or unmasked speakers
[21]]. The dataset contains around 19,000 masked and 18,000
unmasked speech examples. Although the test set labels were
not available at the time of this publication, and the baseline
publication evaluates models on the unweighted average recall
instead of accuracy, we track our models’ performance here as
an indicator of their suitability for mobile health tasks.
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Figure 2: Linear regression weight magnitudes for predicting
model quality, latency, and size. The weights indicate the ex-
pected impact of changing the input hyperparameter. A higher
weight magnitude indicates a greater expected impact.

3.5. Run-time Analysis

The TensorFlow Lite (TFLite) framework enables execution of
machine learning models on mobile and edge devices. To mea-
sure the run-time performance of our student embeddings in
their intended environment, we convert each model to TFLite’s
Sfatbuffer file format for 32-bit floating-point execution and
benchmark inference latency (single-threaded, CPU execution)
on the Pixel 1 smartphone. We also verified conversion to the
Sflatbuffer format does not effect the quality of our representa-
tions. Latency measurements for TRILL and TRILL-Distilled
have also been recorded for reference.

4. Results

Because student embeddings are evaluated on 7 datasets, it is
difficult to naturally rank models based on their "quality”. Thus,
we devise an Aggregate Embedding Quality score by computing
the performance difference between a student model and TRILL
for each task, and averaging across tasks:

Aggregate Embedding Quality,, = ﬁ Z(Amd —Ta) 2
d

where m indicates the student model, d indicates the dataset,
and Ty is the accuracy of TRILL on dataset d € D. This score
tells us the average deviation from TRILL’s performance across
all NOSS tasks and mobile health tasks.

To understand the impact each hyperparameter in Table [I]
has on our student models, we perform a multivariate linear
regression to model aggregate quality, latency, and size using
model hyperparameters as predictors. We standardize each re-
gression target in order to produce regression weights on the
same order of magnitude while preserving relative importance.
The magnitude of regression weights are shown in Figure[2]

To illustrate the latency and quality tradeoff in our cohort
of models, we produce a “quality” frontier plot. For all latency
measurements [ in our study, we pick the model with the best
aggregate embedding quality with a latency less than or equal
to {. This frontier, shown in Figure[3] features 8 student models
of various qualities and latencies. NOSS benchmark and mo-
bile health task accuracies are shown in Table for three rep-
resentative frontier models. The most performant of these rep-
resentative models, which we name FRILL (fast TRILL), has



Table 2: Test Performance on the NOSS Benchmark and Mobile Health Tasks. Sample of model performances and latencies on the
quality/latency tradeoff curve. *Masked Speech test set labels are not available at this time, so we report accuracy on the eval set.

Model ‘ Voxcelebl ~ Voxforge C(;Srfl?r?;}: i CREMA-D SAVEE I\g;zl;i‘fl ESSS'S 0 (ISV‘IZ];') La(‘fs‘sl)cy
TRILL 48.5 84.5 81.9 66.2 70.0 66.0 86.4 98.1 275.3
TRILL-Dist ‘ 47.4 80.0 80.2 70.2 70.0 67.2 87.9 107.1 22.5
Small_2.0_.GAP (FRILL) 44.5 76.9 79.7 70.9 67.5 65.7 86.4 38.5 8.5
Small_0.5_QAT 37.0 75.3 76.6 67.0 67.5 63.4 77.3 12.7 3.0
Tiny_0.5_Comp_GAP 29.2 68.0 57.8 60.8 59.2 61.6 78.8 23 0.9
'E: —0.02 © P 5mall 2.0 GAP (FRILL) ° faster than TRILL 2.5x faster than TRILL-distilled. FRILL is
& - also roughly 40% the size of TRILL and TRILL-distilled.
27004 sthatl 0.5, a1 The curve is steep on both sides of our frontier. This means
% -0.061 Y — that with minimal latency costs we can achieve much better per-
E —0.08] formance on one end, and vice versa on the other. This supports
o our choice of experiment hyperparameters. Though there is a
8 _0.101 frontier model with an aggregate embedding quality higher than
2 FRILL, it comes at the cost of a significant bump in latency.
& —0.121 )
< © Tiny_0.5_Comp_GAP
0 5 10 15 20 25 5.3. Limitations and Future Work

Latency (ms)

Figure 3: Embedding quality and latency tradeoff. x-axis is
the inference latency, y-axis is the difference in accuracy from
TRILL’s performance, averaged across benchmark datasets.

an aggregate embedding quality score of -0.0169, indicating an
average deviation from TRILL quality of 1.69% with respect to
the datasets in this study. FRILL has an inference latency of
8.5ms on a Pixel 1 smartphone, and is only 38.5 megabytes in
the TFLite file format.

5. Discussion
5.1. Factors contributing to model quality and latency

Architecture reduction techniques have a smaller impact on
performance and latency: Reducing MobileNetV3 size via a,
by removing residual blocks, and by pooling early in the net-
work had a smaller effect than QAT and bottleneck compression
(Figure 2). This suggests that the TRILL-distilled mobilenet
part of the architecture was overparameterized compared to the
representation quality possible by the bottleneck.

QAT reduces model size the most and latency the least:
QAT reduces overall model size the most and pixel 1 latency the
least (Figure[2). It decreases embedding quality by only half as
much as compression, and is present in 1/8 of the best models.

Bottleneck compression reduces embedding perfor-
mance the most: This suggests that TRILL-distilled’s last, bot-
tleneck layer is one of the most performance-sensitive parts of
the model. More sophisticated methods than low-rank approxi-
mation might be necessary. Compression is only present in 1/8
of the frontier models.

5.2. Quality / latency tradeoff

After eliminating models with better and faster alternatives, we
are left with 8 “frontier” models (Figure[3). The fastest model
runs at 0.9 ms, which is 300x faster than TRILL and 25x faster
than TRILL-distilled. FRILL runs at 8.5 ms, which is about 32x

In this paper, we focus on making the TRILL embedding
smaller and faster for mobile applications. Some of our op-
timization procedures (architecture reduction and bottleneck
compression) take advantage of TRILL-specific model features,
so it is unclear the extent to which these results generalize to
other representations. In the future, we would like to make other
representation models more lightweight.

Our latency numbers were generated using the Pixel 1
smartphone. While this is a common phone that is resource-
constrained compared to newer models, we do not know the
extend to which our results generalize to even more resource-
constrained environments. Future work can explore bench-
marking these smaller models in more constrained environ-
ments. The smallest, fastest models might be suitable for use
on smart watches or smart home devices.

Finally, having a non-semantic speech embedding in a mo-
bile setting unlocks many privacy-sensitive applications. Fu-
ture work will include benchmarking on more tasks in this cat-
egory. Shor [4] demonstrated that non-semantic embedding can
be fine-tuned for improved performance, and future work in-
cludes testing latency and performance for on-device training.

6. Conclusions

In this work, we proposed an efficient non-semantic speech em-
bedding model trained via knowledge distillation that is fast
enough to be run in real-time on a mobile device. We explore
latency and size reduction techniques, and quantify their impact
on model quality. We then characterize the performance / la-
tency tradeoff curve for the 144 models we trained, and report
size, latency, and performance numbers for representative mod-
els. We identify one model, FRILL, which exhibits a 32x infer-
ence speedup and 60% size reduction, with an average decrease
in accuracy of less than 2% over 7 different datasets, as com-
pared to the original TRILL model. FRILL is 2.5x faster and
35% the size of TRILL-distilled. We also demonstrate the ef-
fectiveness of our embeddings on two new mobile health tasks.
These new tasks in particular benefit from the on-device nature
of our embeddings, since performing computations locally can
improve both the privacy and latency of resulting models.
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