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ABSTRACT 
Time of use tiered pricing schedules encourage shifting 
electricity demand from peak to off-peak hours. Charging 
times for electric vehicles (EV) can be shifted into overnight 
hours, which are usually off-peak. EVs can also be used as 
energy storage devices, available during certain peak hours 
to power a house with electricity stored during off-peak 
hours. Studies suggest both techniques are practical, but were 
based on simulated demand patterns or large commercial 
fleets. To investigate feasibility on a per home basis, we 
collected data from 15 EV homes using the Lab of Things 
sensing infrastructure. We evaluate a scheme that powers 
homes with their car battery during expensive electricity 
periods and then charges the battery during cheaper periods. 
We show an average potential savings of $10.91/month for 
shifting charging times, and an additional $13.58/month for 
powering the home from the EV, even accounting for the 
inefficiencies of electric conversion. 
Author Keywords 
Sustainability; electric vehicles; home energy use; sensing; 
Lab of Things; load leveling; residential.  
ACM Classification Keywords 
J.7 [Computer Applications]: Computers in Other Systems: 
Command and control  
INTRODUCTION  
The stability and availability of electrical energy is a critical 
concern for many countries. Researchers have focused on 
understanding and reducing energy use in homes through the 
development of new sensing techniques and eco-feedback 
interfaces [e.g. 3, 7, 9, 10, 13, 26, 36]. In addition to reducing 
overall usage in the home, another important consideration 

is shifting energy use, in particular reducing usage at peak 
times. The energy infrastructure must be provisioned to 
handle peak load, and methods for generating this extra 
capacity are often expensive, involving the use of less 
sustainable fuels that produce more carbon byproducts. 

While the problem of peak demand is well known, the 
increase of renewable energy sources such as wind and solar 
has introduced a new challenge of intermittent energy 
production. Unpredictable production requires energy 
storage during periods of overproduction and flexible loads 
that can shift between storing energy during periods of high 
production and providing energy when the renewable source 
is not available [5, 16].  

Energy companies already use a variety of strategies to 
encourage people to shift when they use energy in an effort 
to reduce peak demand or to shift to greener times of 
production. These include Time of Use (TOU) pricing, 
where rates are higher during peak times and lower during 
the non-peak, and demand response programs that offer 
savings to people who reduce energy use at certain times, 
typically with relatively short notice. Smart meters analyze 
energy use, and devices such as the Nest thermostat and other 
smart meters cooperate with electric companies to offer 
monetary incentives for participation in automatic energy 
reduction programs [30]. WattTime [44] attempts to monitor 
the grid in real-time to infer the source of energy production 
and provides a service to automatically shift appliance and 
device usage in the home to times of greener production as 
means to reduce overall carbon footprint. 

Electric vehicles (EVs) are an interesting addition to the 
energy usage landscape. They are large energy consumers 
and their charging times may be shiftable. Moreover, their 
batteries can be used as home energy sources using a power 
inverter. Past research has explored the economic feasibility 
of vehicles providing energy to the grid [20, 21, 22, 40] and 
the length of time a car battery could power a home during 
an emergency [41]. EVs provide an interesting opportunity 
to “time-shift” energy use, thereby reducing peak demand, 
saving costs, and operating within green production times.  
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Using data collected from 15 homes with electric vehicles, 
this research quantifies the potential for shifting energy use 
away from peak times in two ways. First, we evaluate 
shifting electric vehicle charging to non-peak times to save 
car owners money and help with peak load leveling. Second, 
we evaluate the feasibility of powering the car owner's home 
from the battery in their electric vehicle during peak times 
and then recharging the battery during non-peak times to 
shift when energy is drawn from the grid.  

We used the Lab of Things (LoT) platform [24] to log whole 
house energy use, car charging energy use, charging 
behavior, and car presence. We logged a median of 48 days 
per home, 113 days in one home, and 710 days in total. This 
real-world data set allows us to analyze the potential for 
energy shifting both to save the home owner money and shift 
peak demand. Unlike prior work, we are one of the first to 
empirically examine the use of EVs for shifting peak loads 
in the home by collecting actual EV usage data. 

Our experiments show that we can indeed save money for a 
homeowner by shifting charging times and powering the 
house from the EV battery by taking advantage of TOU 
tiered electricity pricing that utilities offer to reduce peak 
demand. The simplest optimization of shifting charging 
times would save the homeowners on average $10.91/month. 
For 98% of the 710 days in our dataset, the EV’s battery had 
enough charge when it arrived home to power the home 
during the peak hours. Doing so would save homeowners on 
average an additional $13.58/month, a 7.6% average savings 
on their monthly energy bill. Our primary analysis uses TOU 
rates from PG&E in California; additional analysis with 
other TOU pricing schedules shows similar results.    
RELATED WORK 
We describe related research on optimal charging schedules 
and providing power from an EV battery to the electrical grid 
or to a home.  
Charging Electric Vehicles 
The benefit of shifting electric vehicle charging has long 
been recognized. Many EVs offer simple timer mechanisms 
to configure charging to start at a certain time. An interview 
study conducted by Kurani et al. with 61 EV drivers in San 
Diego, CA showed that they were highly motivated to charge 
their vehicles during the super-off-peak period from 
midnight to 5 am [23]. This was due both to TOU pricing and 
their desire to be responsible citizens and not contribute to 
peak demand power issues which were well publicized in 
California. Davies and Kurani have also argued that models 
that assume one-per-day charging of EVs are overly 
simplistic, and given initial observations of variable charging 
behavior among EV drivers it would be better to use more 
complex models of EV charging. They stress the need to 
build a more comprehensive dataset of EV driving and 
charging [8]. 

More generally, managing and optimizing EV charging has 
long been a popular research topic. Anticipating the potential 

of wide spread EV adoption to cause an overload of the 
power grid during periods of simultaneous charging, 
researchers have proposed a range of algorithms to 
coordinate charging. Some assume centralized control over 
fleets of EVs [e.g. 15, 37], and others are distributed control 
algorithms [e.g. 2, 14, 27]. Many of the distributed control 
algorithms assume signals about the condition of the power 
grid, either directly based on monitoring that would be 
installed [2] or indirectly through price information from a 
utility [15, 27].  

While preventing wide-spread charging from overloading 
the power grid is an important topic, we focus on adjusting 
the charging schedule in individual homes to save money and 
reduce peak demand. We evaluate the potential savings using 
data collected on real usage, not with simulations. 
Vehicle to Grid (V2G) 
The University of Delaware Grid-Integrated Vehicle group 
has conducted research on the feasibility and economics of 
Vehicle to Grid power (V2G), where electric drive vehicles 
provide power to the grid when parked [e.g. 20, 21, 22, 40, 
43]. Given the relatively small amount of power available 
from any single car, their analysis demonstrates the need for 
an aggregation service to create coalitions of 300 or more 
EVs to guarantee the 1 megawatt of capacity necessary to 
participate in the power regulation market [20]. Other 
researchers have studied the achievable power capacity of 
coalitions of EVs [17]. 

For utilities or companies that own fleets of vehicles, their 
analysis in four US regional markets showed that V2G could 
be profitable [40]. Additional research by the group 
demonstrates that the storage and discharge capabilities of 
V2G could help stabilize the intermittency of renewable 
energy generation (e.g. wind, solar) [22].  

In our work, we empirically examine how households use 
power for homes and their EV charging. We focus on using 
the EV to minimize the cost of energy used at home by 
shifting when power is drawn from the grid, which does not 
require home owners to participate in V2G coalitions.  
Vehicle to Home (V2H) 
Companies and researchers have recognized the potential of 
EV batteries as direct energy sources for individual homes. 
One focus has been on their potential to power homes during 
emergencies when grid power is unavailable. In 2012, 
Toyota tested a V2H backup system using Prius cars in 10 
homes in the Toyota City Project in Japan [12]. In early 2015, 
the company announced that the hydrogen powered Mirai 
arriving in late 2015 includes a port in the trunk that Toyota 
claims can be used to power a typical Japanese home for up 
to a week [35]. Other car companies are also testing V2H 
technology. In late 2014, Nissan deployed a test of Leaf-To-
Home charging stations at dealerships in Japan [38], and in 
February 2015 Tesla announced it is working on a consumer 
battery pack based on batteries used in the Tesla car [34].  
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Research studies support the potential of EV batteries to 
power homes, particularly in emergency situations. Tuttle et 
al. [41]  used residential energy data collected by the Pecan 
Street project [32] for 20 homes in Austin, Texas to analyze 
how long backup power could be provided by a battery 
electric vehicle (BEV) or plug-in hybrid electric vehicle 
(PHEV) alone, and in conjunction with rooftop photovoltaic 
solar panels. The BEV batteries sizes used in the simulations 
were 19.2 kWh and 32kWh, inspired by EVs available in 
2012. Depending on the home energy use, their simulation 
showed BEVs could keep the home running on average 
between 10 hours (hot summer months in Texas) and slightly 
over 50 hours in the best case (large battery in March). 

Our research differs from Tuttle et al. because we do not 
focus on emergency situations. Instead we use logged data to 
analyze the use of EV batteries to shift when homes draw 
energy from the grid to save consumers money and flatten 
grid demand during normal use. Also, many of our 
participants have EVs with larger batteries (60 and 85 kWh). 

Tuttle et al. [41] used an 88% conversion efficiency for 
discharging energy from the battery to the home. This was 
based on measurement of a Chevrolet Volt battery during hot 
weather (≥ 92 oF, 33 C). The authors found a 93% conversion 
efficiency during cooler weather (67– 71 oF, 19 – 21 C), but 
opted to use the more conservative value. For our data, we 
analyze a range of conversion efficiencies to show how 
savings differ.  

In their SmartCharge work, Mishra et al. compute the 
monetary return for individual homes to use dedicated 
rechargeable batteries for load shifting [28]. They develop a 
learned model for predicting a home’s next-day electricity 
demand. Combined with next-day pricing data from electric 
utilities, they optimize the interplay between charging and 
discharging a home’s batteries, showing a potential for a 
positive return on investment. In contrast, we propose using 
EV batteries instead of home batteries, which means the 
battery cost is absorbed as part of the vehicle cost, but the 
batteries may be away and not always available to power the 
house. A follow-up project by Mishra et al., proposes a peak 
demand surcharge to flatten demand and introduces 
PeakCharge, a peak-aware charging algorithm that would 
optimize energy use given the proposed surcharge [29]. We 
evaluate savings given existing TOU pricing schedules. 

A project by Pedrasa et al. solves a complex optimization 
problem concerning electric energy costs and comfort for a 
home with a PHEV, electric water heater and space heater, 
pool pump, and other “must-run” electric services [33]. In 
this case, a demand pattern is assumed known in advance. 
Like us, they assume the home’s vehicle can be used to 
power the house. Unlike our work, this work depends on a 
simulated demand pattern.  

Finally, although not a focus of our research, for people with 
privacy concerns, other researchers have suggested that the 
use of rechargeable batteries to shift power usage can be 
valuable for hiding appliance usage information from non-
intrusive load monitoring [19, 31].  
STUDY METHOD 
We gathered a data set of real-world home energy usage and 
car charging behavior from 15 houses using the Lab of 
Things research platform. Due to the amount of equipment 
required in each house, we conducted the study in two 
rounds. Round 1 occurred from July-September 2014 and 
collected data from six homes. Round 2 occurred from 
January-March 2015 and collected data from eight homes. 
One additional home participated in both rounds and as a 
long term testbed to bring the total to 15 homes. This section 
describes how we used LoT to collect data, the participating 
homes, changes we made to the LoT platform, and our study 
method to handle issues encountered during deployment.  
LoT Research Platform 
Lab of Things is a freely available, extensible research 
platform designed to enable deployments into homes of a 
range of connected devices for studies [24]. The LoT 
platform consists of a Windows computer called the Home 
Hub installed at the home and running the HomeOS client 
code to interact with devices [11], and a set of cloud services 
for remote access, monitoring, data upload, and remote 
updating. LoT code has been downloaded more than 8,000 
times, used by more than 80 student developers in class 
projects, and enabled several research projects [25]. The first 
author co-leads the Lab of Things project. 

LoT's goal is to change the scale and pace of research on 
connected devices in homes by enabling researchers to focus 
on their area of interest, e.g. building new technology or 
conducting studies, without needing to build out 

  
(a) 

 
(b) 

 
(c) 

Figure 1. (a) Hardware deployed in Round 1 homes. In Round 2, two of the red beacons seen in (b) replaced the custom 
distance sensor, one was put in the car and the other in garage. (b) EV29’s Home Hub and home beacon 

 (c) EV26’s garage wall with the two energy meters we added.  
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infrastructure for field deployments. LoT's extensible 
platform already supports logging data from and actuating a 
wide range of sensors, including energy meters, cameras, 
thermometers, motion sensors, Microsoft Kinect, and custom 
sensors built with Arduino or .NET Gadgeteer. LoT can be 
extended as needed to interact with new devices by writing a 
small amount of code called a driver. For this field 
deployment, we extended the default LoT Sensor application 
with additional monitoring capabilities and also contributed 
a driver for Texas Instruments Bluetooth beacons.  
Data Collection 
We used the Lab of Things’s Sensor Logger application to 
collect sensor readings and send them to cloud data storage 
for analysis. Figure 1 shows the hardware deployed in each 
house for data collection, including the Home Hub, an Aeon 
labs z-stick to communicate with zwave sensors, and the 
following sensors to collect: 

1. Whole house energy use. We used an Aeon Labs Home 
Energy Meter connected to the LoT Sensor application to 
record data at 1 minute intervals. This two-clamp meter was 
installed by an electrician inside the home’s electrical panel. 
In Round 1, a few homes had more than one electrical panel. 
In those homes, we installed multiple meters and combined 
the results to get total home energy use. In Round 2, we 
recruited for homes with only a single panel to enable 
deployment in more homes given our supply of meters. 

2. Energy used for car charging. For homes that charge 
using a 240 volt circuit we used another Aeon Labs Home 
Energy Meter (13 homes). For homes that charged using an 

110 volt outlet (2 homes, EV6, EV22) we inserted inline an 
Aeon Lab Smart Energy Switch which measures energy used 
by plugged-in devices. Both reported at 1 minute intervals. 

3. Presence of the car at home. The car’s presence at home 
determines the hours charging can be shifted and when its 
battery would be available to power the house. The energy 
signature of a charging car is trivial to detect, but after 
charging completes the vehicle is no longer detectable. 
Reliably detecting a car’s presence at home was the most 
difficult sensing task of the study. We piloted many different 
approaches including placing motion sensors on the garage 
floor, which were destroyed by being run over, GPS trackers 
in the car which were deemed privacy invasive and 
expensive, and garage door sensors, which were not reliable 
due to double garage doors and opening of garage doors for 
other reasons.  

For Round 1, we built custom distance sensors using 
Microsoft .NET Gadgeteer, one of which is shown in Figure 
1. These were designed to be placed in the garage a short 
distance away from the car. The sensor reports a small 
distance when the car is parked and a longer distance when 
the car was not present. We also deployed the ECOLINK Z-
Wave Garage Door Tilt Sensor as an emergency back-up. 
Unfortunately, we had not anticipated that a participant 
might park their car in several different places.  

For Round 2, we extended Lab of Things with the drivers to 
enable Bluetooth Beacons and tracked car presence using the 
Texas Instruments CC2541 configured as beacons (Figure 
1b). We deployed two beacons to each house, one for the car 

ID Valid 
Days Car Type People 

Home 
Size  

(sq. ft.) 

Median 
Charging Time 

per Session 
(minutes) 

Median 
Charging 
Power per 

Session (kW) 

Median 
Charge per 
Day (kWh) 

Median 
Household 

Demand per Day 
(kWh) 

EV2 26 Tesla 3 3000 29 17.6 8.5 26.9 
EV3 113 Tesla 4 2400 105 8.6 17.4 15.2 
EV4 15 Tesla 4 4700 43 13.6 6.6 61.5 
EV5 21 Leaf 3 3100 114 3.5 5.1 31.2 
EV6 48 Leaf 4 4390 438 1.4 10.7 59.1 
EV7 63 Leaf 4 2800 123 3.4 3.0 55.0 
EV8 68 Tesla 3 2700 38 18.0 7.0 37.5 

EV22 42 Leaf 4 2900 548 1.4 11.9 15.7 
EV23 42 Tesla-60 5 4000 51 8.5 15.6 34.6 
EV24 50 Leaf 4 2900 150 3.5 9.4 26.7 
EV25 50 Leaf 3 1790 68 5.1 7.4 12.1 
EV26 49 Leaf 3 3300 39 5.9 4.4 13.0 
EV27 27 Tesla 3 3000 146 7.4 14.1 23.5 
EV28 48 Tesla 6 2100 90 4.3 17.0 45.6 
EV29 48 Tesla-60 4 3000 121 6.5 12.1 19.9 

Table 1: Households that participated in the study. Except for the two Tesla-60, all the Teslas had 85 kWH batteries. The 
Leaf battery is 24kWh. EV6 and EV22 used Level 1 Chargers (110 Volt circuit), all other homes had Level 2 (240 Volt).  
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and one for data validation to remain in the garage. Detecting 
the garage beacon meant that logging was still working and 
served as a check on the health of the beacon receiver. Again 
the Garage Door Tilt Sensor was deployed as back-up. 

4. Temperature sensing. EV batteries are sensitive to 
temperature extremes [41], so we logged temperatures in the 
garages where the vehicles were parked using the Aeotec Z-
Wave Multi-Sensor. In our moderate climate, we saw only a 
comfortable temperature range, from 54.2o F (5th percentile) 
to 80.9o F (95th percentile) and do not consider temperature 
impact on battery efficiency in our primary analysis. Note, 
Figure 5 shows potential savings using a range of battery 
efficiency providing insight into how savings would change 
for less efficient batteries due to temperature or other factors. 
Participants & Install visits 
We recruited households with a single, completely battery 
operated vehicle, either a Nissan Leaf (24kWh battery, 7 
cars) or Tesla Model S (2 60kWh batteries, 6 85kWh 
batteries). To simplify analysis we selected drivers who 
charge their cars only at home with rare exceptions, drive 
more than 75 miles per week, and excluded hybrid vehicles. 
Homes ranged in size from 1790 – 4700 sq. ft. (median 

3000). All homes had 3 to 5 residents with a mix of adults 
and children, and were located in Washington State, USA. 
Participants were recruited through a neighborhood mailing 
list and an EV enthusiast mailing list at our company. 

Table 1 shows household demographics. EV2–EV8 
participated in Round 1, EV3, EV22 – EV99 in Round 2. We 
visited each home twice, once to deploy sensors and once to 
remove them. We brought a licensed electrician to install or 
remove the clamp meters placed inside the home’s electrical 
panel. Participants received their choice of two software 
gratuities for participating in the study. EV2, EV3 are the 
homes of last author and first author respectively.  
Representative Participants 
We were interested in how representative our 15 homes 
were. We asked the main driver of each EV to estimate their 
average weekly driving distance. The results are shown as a 
box plot in Figure 3. (For drivers who gave us a range of 
distances, we took the midpoint of the range.) We compared 
this with data from the 2009 U.S. National Household Travel 
Survey (NHTS) [42].  

The NHTS is a survey of U.S. household travel patterns. It 
includes vehicle data giving estimates of the annual miles 
driven. We filtered out vehicles that were not driven for 
work, commercial vehicles, and those that were not regular 
cars (i.e. not vans, SUVs, trucks, motorcycles, or golf carts). 
The survey did not ask if the vehicles were electric, but we 
surmise the vast majority were gasoline powered, given the 
relative popularity of EVs in 2009. We used the survey’s 
BESTMILE estimate of annual mileage, eliminating those 
values flagged as outliers and zero values, leaving annual 
mileage estimates for 86,193 vehicles. Dividing the annual 
numbers by the number of weeks in a year, the box plot for 
weekly mileage from NHTS is shown in Figure 3. We see 
that the two middle quartiles of our subjects generally fall 
within the third quartile of NHTS respondents, meaning our 
subjects generally drive farther than average, although not 
excessively more. 

A further comparison with other drivers is based on a 2012 
survey of 1400 U.S. EV owners in California [6]. The survey 

 
Figure 3: Our subjects generally drove more miles per 
week than drivers from the 2009 U.S. National Household 
Travel Survey. 

0 100 200 300 400 500

Miles per Week

National Household Travel Survey vs. EV Home Survey

National Household Travel Survey (86,193 subjects)

EV Home Survey (15 subjects)

 
Figure 2: Processed household sensor values indicate the household electric demand, vehicle charging demand, and whether or 
not the vehicle is home. This vehicle was undergoing repairs from an accident for about nine days in the middle of the timeline. 
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found that 91% of California owners lived in a single-family, 
detached home, and that 91% have installed a residential 
charger. Both these features were also true of all our study 
participants. 
Monitoring to Reduce Real World Deployment Issues  
Based on our own experience and that of other researchers 
[e.g. 18], we were aware that in-home sensor deployments 
invariably have challenges. We took several steps to detect 
sensor and data collection issues. First, we followed the 
online LoT study deployment instructions to make all hub 
interfaces remotely accessible and set up an email alert if any 
hub failed to send a heartbeat message for 15 minutes. We 
also extended the Sensor application deployed in each house 
with configurable monitoring per sensor and set up email 
alerts when no data was seen from the home energy sensor 
or home beacon for 30 minutes. Finally, at the end of every 
week we used the data export tool to download and plot data 
(see Figure 2) for each hub to check for anomalous values.  

Using these methods we successfully detected numerous 
problems and either visited homes or worked with household 
members remotely to try fix them. However, the time to 
schedule revisits to homes and other issues led to lost data as 
shown in the valid data column of Table 1. In EV4, remote 
monitoring revealed the distance sensor was dropping off the 
home WiFi.  Unfortunately even with visits and reinstalls we 
ultimately got only a few days of data from this home. EV5 
parked the car outside the garage invisible to the distance 
sensor for several days. In EV27, we visited the home after 
detecting anomalous readings and discovered one of the 
electric clamps had slipped. In EV25, lack of car charging 
data was due to a car accident which put the car in the repair 
shop for several days. We also asked households about low 
energy or car charging readings and found several 
households went on break during a school holiday. 

However, to make clear the realities of home deployments, 
we also want to report on two failed deployment sites not 
included in Table 1 or any analysis. In Round 1, the failed 
home (EV9) had multiple issues: a car frequently parked 
outside the garage out of range of the distance sensor and a 
low-bandwidth home WiFi connection that prevented remote 
monitoring so we could not detect sensor failures. Based on 
this home and EV5, we moved to beacons for car presence. 
In Round 2, the batteries in both beacons for EV21 failed 
three days into study. Remote monitoring alerted us to this, 
and we visited and replaced them. However, due either to 
hardware problems with the beacons or the distance the car 
was parked from the house, the car beacon data ended up 
having significant gaps that we deemed too unreliable to use 
for analysis, and we had to drop this house, despite our 
recovery efforts. 

Even though two homes had deployment problems, overall 
the existing monitoring of LoT combined with the additions 
we contributed to the platform helped us catch and respond 
to many problems or detect when home-owners’ behaviors 
had changed so we could check-in with them (about 

vacation, etc.). We hope the additional monitoring options 
we added to the platform are valuable to future researchers 
deploying studies.  
DATA ANALYSIS 
With raw data gathered as described above, we processed it 
into clean, meaningful signals to support our analysis of 
charge shifting and vehicle-to-grid. Specifically, we needed 
to know household electricity demand, vehicle charging 
electricity demand, and whether or not the vehicle was 
parked at home. 

The raw sensor data was stored in log files as tuples giving 
the sensor name, a time stamp, and a sensor measurement for 
each sensor reading. For each household, we built 
configuration files that mapped the specific sensor names to 
the actual signals we were trying to measure, such as 
household power demand and vehicle charging demand. 
These configuration files were useful for abstracting away 
the household-specific sensor names and to account for when 
a sensor was renamed or replaced during the course of the 
study. This was also how we accommodated homes with 
multiple electrical circuit breaker boxes, which led to 
multiple household power sensors that had to be summed to 
measure whole-household demand. 

After reading each sensor log and de-duplicating identical 
time stamps, the sensor data was concatenated according to 
the configuration files into four different raw time series: 

• Household electric power demand 

• Vehicle charging electric demand 

• Vehicle distance from depth sensor 

• Vehicle beacon signal strength 

 
Figure 4: This shows the computed state of the vehicle 

from Figure 2 on Saturday, 17 January 2015. The vehicle 
was waiting at home from midnight until it left at 

approximately 9 a.m. It arrived home again around 12:30 
p.m., was briefly in the “waiting” state, and then almost 
immediately plugged in for charging until about 2 p.m. 
Then the vehicle was driven away again for another two 
hours, parked at home, and charged starting around 4 
p.m. The vehicle left home shortly before 6 p.m., came 

home briefly around 10 p.m. and then left again. 
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The household power demand values were normally stable 
and thus required no further processing. The vehicle 
charging values sometimes showed brief, unrealistically 
large spikes, so we smoothed them with a 20-minute wide 
symmetric median filter, extending 10 minutes prior and 10 
minutes after the value being smoothed. As explained above, 
we measured vehicle presence with either a depth sensor or 
a beacon. We discovered the depth sensor produced very 
noisy values, so we smoothed it with a 30-minute wide 
symmetric median filter. The four resulting time series 
supported not only our subsequent analysis, but also served 
as a convenient way to discover problems with our logging 
system (such as a sensor going off-line) or unexpected 
behavior from our study participants (such as a vacation).  

An example of these time series is shown in Figure 2. Note 
that the household power demand is always larger than the 
vehicle charger demand. This is because the household 
demand includes the charger demand. For this particular 
household (EV25), the participants’ vehicle was undergoing 
repairs from an accident that occurred on 21 January, which 
explains the approximately 9 days of vehicle absence in the 
middle of the timeline. 

After this processing, we produced a clean, interpolated 
summary log for each household with evenly sampled values 
at 1-minute intervals consisting of: 

• Household electric power demand in watts 

• Vehicle charging demand in watts 

• Vehicle state from {away from home, waiting at home (not 
charging), charging (at home), unknown} 

We considered the vehicle charging whenever the smoothed 
charging demand exceeded a manually set threshold. We 
considered the vehicle at home whenever the smoothed depth 
sensor measurement was below a manually set threshold 
(indicating the vehicle was close to the sensor) or whenever 
the vehicle’s beacon was detected. Note that we included an 
unknown state for the vehicle to account for those times 
when the depth sensor was not reporting and no charging was 
occurring. An example of the vehicle state from the first day 
of the household in Figure 2 is shown in Figure 4. In our data 
analysis algorithms as described next, we err on the side of 
caution and filter out any data with an unknown state from 
our computations of savings and cost benefits. 

   Car Charging Shifted to Cheaper Tier Car Powers Home During Expensive Tier  

ID Valid 
Days 

Median 
Household 
Demand 
per Day 
(kWh) 

Avg. amount 
saved per 
month ($) 

% Savings on 
monthly bill 

Avg. amount 
saved per 
month ($) 

No. of days car 
charge 

insufficient 
% Savings on 
monthly bill 

EV2 26 26.9 11.71 7.2 7.76 0 4.8 

EV3 113 15.2 13.59 4.9 1.81 0 0.6 

EV4 15 61.5 0.00 0.0 5.76 0 6.2 

EV5 21 31.2 5.52 5.1 10.11 0 9.4 

EV6 48 59.1 4.88 1.7 18.91 10 6.6 

EV7 63 55.0 6.22 2.9 22.73 3 10.5 

EV8 68 37.5 0.00 0.0 35.32 0 18.1 

EV22 42 15.7 3.01 2.0 16.59 1 10.9 

EV23 42 34.6 28.22 9.7 20.44 0 7.0 

EV24 50 26.7 15.06 7.5 10.94 0 5.5 

EV25 50 12.1 10.63 10.6 3.45 0 3.4 

EV26 49 13.0 10.60 11.8 10.72 0 11.9 

EV27 27 23.5 26.96 24.8 8.17 0 7.5 

EV28 48 45.6 19.73 6.1 24.48 0 7.6 

EV29 48 19.9 7.46 4.6 6.54 1 4.0 

Average 47.3  10.91 6.6 13.58  7.6 

Table 2: (Left) Average amount saved per month and % savings on monthly bill for shifting car charging to cheaper tier. (Right) 
Additional average amount saved per month and % savings on monthly bill for car powering home during expensive tier with a 
90% battery efficiency model. Also shown are number of days for which the car’s battery had insufficient charge to completely 

offset the home’s power demand during peak pricing tier. PG&E TOU tiered pricing assumed. 
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CHARGE SHIFTING 
One of the optimizations to save energy costs in a TOU tiered 
pricing structure is to shift the use of energy to cheaper tiers. 
That is, instead of the car being charged as soon as the 
homeowner plugs it in, the charging is scheduled to happen 
during the cheapest tier. We analyze the savings as a result 
of such shifting by computing the energy used by the car’s 
charger per household during peak demand period for each 
24-hour period. This is accomplished by isolating the car 
charger’s power data during the expensive tier and 
computing the energy consumed. We then apply pricing 
from each tier to estimate the energy costs.  

Analyzing TOU tiered pricing for various states across the 
US, one notes that the peak demand period is often between 
1 p.m. and 8 p.m. For our analysis, we made use of the PG&E 
TOU pricing where the base price per kWh is $0.143 and 
peak demand pricing is $0.336/kWh between the hours of 1 
p.m. and 7 p.m. PG&E serves California, even though our 
subjects were all in Washington State. Because Washington 
does not offer TOU pricing to consumers, we chose PG&E 
as a nearby electric utility that does offer TOU pricing. 

For this analysis, we computed the effect of delaying the start 
of charging until 7 p.m. when the vehicle was at home in the 
evening. Table 2 (left) shows the average dollar amount 
saved per household as a result of charge shifting. Over all 
15 households, the average monthly savings is $10.91. Also 
shown are the total dollar savings during the entire duration 
of the study. In every case, the EV was available the next 
morning with a full charge. 

It is important to note that because these households are 
located in an area that currently does not have TOU charging, 
there is no current financial incentive for the households 
themselves to use features provided by car manufactures to 
delay EV charging to cheaper times during the late night. In 
fact, in our dataset only two homes, EV4 and EV8, did not 
charge their cars during peak hours. Our data shows in the 
absence of TOU pricing, most homes did not shift their 
charging away from peak periods. 

We showed earlier that our EV drivers drove more than most 
drivers in the National Household Travel Survey. Because 
more driving means more electricity use, absolute savings 
for vehicles driven less would be reduced. 

Though a straightforward optimization, simple shifting of 
charging schedule is only the first step in making use of the 
car’s battery and TOU pricing to save energy costs. Savings 
could be further maximized by offsetting the home’s power 
consumption (in essence shifting the home’s power) during 
peak demand tiers, which we examine next. 
POWERING HOUSE WITH THE CAR (V2H) 
Several constraints must be taken into account to assess the 
economics of using the EV’s battery to offset a home’s 
power demand during peak pricing times. First, the car’s 
battery should be charged during a cheaper pricing tier. In 
our dataset we observed the typical office hour’s schedule 

where the car was left charging overnight, ready to be driven 
the next morning to work.  
Use the PG&E pricing schedule as an example, the first 
constraint mandates that the car’s charging period be shifted 
out of the 6 hour expensive segment. In our analysis, we 
assume this is the case and verified that the duration of non-
peak hours provides sufficient time for all cars in our study 
to be fully recharged. This is also important for the second 
constraint: if the car’s battery is depleted as a result of 
powering the house, there should be sufficient time left in the 
non-peak segment for the car’s battery to be fully charged. 
We analyzed the dataset in segments of 24 hour periods with 
cost computation performed on a per-minute granularity. For 
each day, we estimated the residual charge of the battery that 
could power the home during the expensive tier. This 
estimation is performed at the beginning of the expensive 
tier, with the proviso that during the expensive tier the car 
cannot be charged and can only power the house. This 
estimation is performed by looking ahead in time (up until 
the start of the next day’s expensive tier time point) at all the 
car charge events. Figure 5 illustrates this process.  
The net kilowatt hours of these charge events is computed 
and subtracted from the car’s total battery capacity to 
estimate the amount of charge available to power the house. 
It should be noted that it is possible to have multiple distinct 
charge events with the car being driven in-between. 
However, by only subtracting the net energy of charge events 
from the total battery capacity, we compute a conservative 
estimate. Additionally, losses during battery charging 
(efficiency factor) are taken into account. The following 
equation summarizes how we compute the estimated battery 
charge available to power the home. 

 

 

 
Figure 5: Estimation of battery charge (EBC) that can be 
used to offset the home during the expensive tier is made 

at the start of the tier. EBC is computed by summing 
energy consumed by all car charging events following the 
estimation point for the day up until the start of the next 

day’s expensive tier. 
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Next, the usable battery charge (UBC) is computed that takes 
into account the inverter and the battery’s chemical to 
electrical conversion inefficiencies. This is computed by 
multiplying the EBC with the discharge efficiency factor: 

. For our analysis, it was assumed 
that the charging and usage efficiency factors were the same, 
i.e. . As described later, we run our 
analysis for a variety of efficiency factor values ranging from 
low to high. This allows us to model the economics of 
offsetting home power demand using a car battery without 
explicitly considering complex battery models to predict 
efficiency factors that depend on its chemistry, temperature, 
discharge rate, humidity etc.  

Once an estimate for the UBC is computed, we segment out 
the home’s power usage during the peak expensive tier that 
can be offset by the car for potential savings. We compute 
the total energy in kWh that the home consumes in this 
period with the condition that the car be present. In 
particular, if the car status is away or unknown, we do not 
sum the energy for those periods to the expensive tier’s home 
energy use as it cannot be offset by the car. 

Finally, we compute how much of the expensive tier energy 
can be offset by the car and the resulting price for that energy. 
It should be noted that a corrective factor that takes into 
account the battery charge-discharge inefficiencies is used to 
compute the effective price per kWh for energy used from 
battery to offset the home. That is, for every 1 kWh used 
from the battery, we use 1/(  * ) from the 
grid. If the UBC is less than the total energy used by a home 
during the expensive tier, then a deficit results which is 
charged at the expensive tier rate. 

Table 2 shows the average savings in USD and percentage 
during peak pricing tier when an electric vehicle is used to 
offset the home’s power needs, assuming an efficiency factor 
of 0.9 for battery charge and discharge. The average savings 
per household is $13.58/month. Also noted in Table 2 are 
number of days for each house where the UBC was less than 
the total energy a home consumed during the expensive tier. 
That is, the car’s battery did not have sufficient charge to 
bring about maximum savings. Out of the 710 days in our 
dataset this occurred 15 times (2%), and primarily in one 
household EV6 (10 days). Thus 98% of the time, the EV 
battery had sufficient charge to fully power the house during 
the expensive tier.  
Break Even Point at Low Battery Efficiency 
As discussed previously, the battery and inverter efficiency 
can vary based on a large number of parameters. To better 
understand how the savings from car powering the home 
vary with battery efficiency, we ran our analysis on 
efficiency ranging from 45% to 95%. Figure 6 shows that the 
break-even point is around 65%, which is far worse than 
modern battery technology.  

This is a significant observation as it opens up making use of 
used but still functional EV batteries for home power 

management. For instance, a modern Li-Ion battery nearing 
end of life for EV use still performs at about 75-80% capacity 
and efficiency [1]. Such second-use in energy storage system 
for residential peak demand flattening has been an active 
area of research, particularly from the perspective of 
understanding a battery’s capacity fade model and making 
the most out of a second-use battery. Our results based on 
real power usage further bolsters the argument for using 
“spent” EV battery for home power. 
DISCUSSION 

Other Pricing Schemes Have Similar Savings 
Though we make use of the PG&E TOU tiered pricing plan 
for our analysis, the results extend to other tiered pricing 
plans as well. In particular, it is important to have a sufficient 
difference in the expensive tier and base tier so that battery 
inefficiencies do not matter. If this is the case, the 
homeowner will benefit by powering their home with their 
car’s battery. To validate this, we ran our analysis using 
pricing for Baltimore Gas and Electric and Wisconsin Public 
Services and found an average monthly saving across all 
households of $13.36 and $13.50 respectively for powering 
the house from the EV. 
Prediction Unnecessary With Current TOU Pricing 
When we started this research, we anticipated we would need 
to learn participants’ commute patterns and use prediction to 
ensure the shifting algorithm would start recharging in time 
to guarantee enough battery charge for the following day’s 
driving needs. However, we found for all homes in our study 
that the off-peak pricing tier lasted long enough to fully 
charge the EV battery, even when the battery was discharged 
to power the home during the most expensive pricing tier. 
Thus with current Time of Use pricing schedules, learning 
and prediction of user’s commute patterns is not needed. 
Utilities would need to shorten their off-peak pricing times 
for prediction to become relevant. 

 
Figure 6: Average monthly percentage savings during 

peak pricing tier when using the car’s battery to offset the 
home power consumption as a function of the battery 

efficiency. Notice that the cost benefit break-even point is 
around 65%, i.e., using battery of efficiency lower than 
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Risk of Uncharged Battery 
There is some risk that delaying the start of charging until 
later, or using the EV’s battery for powering the house, may 
leave the EV with insufficient charge for an unusual trip. We 
see two simple solutions to this potential problem. First, 
chargers could be equipped with an override button, allowing 
an owner to easily indicate that the vehicle should be ready 
for another trip soon, ignoring the charging/discharging 
algorithms we proposed above. Offering manual override, or 
more generally the option to manually control charge 
shifting, would be valuable in future studies to investigate 
whether EV owners are comfortable with automated shifting 
or prefer manual control. A study of time of use pricing for 
mobile data found participants preferred to manually control 
their usage [39]. Our expectation is that automated shifting 
will appeal to EV drivers who currently leave their cars 
charging for long periods, but it may take time for people to 
develop trust in shifting algorithms and would be interesting 
to study. 

Another way to decrease the risk of an uncharged battery is 
to impose a rule that the EV battery can never be discharged 
below some predefined capacity (e.g. 20%) to account for an 
unanticipated trip. In our analysis using the aforementioned 
PG&E tiered pricing, we found that in general there was 
sufficient time to re-charge the car completely after being 
used to offset energy in the expensive tier. It is unlikely, but 
possible that undercharged events may happen with the 110V 
slower chargers, especially when attempting to fully charge 
a completely depleted battery. 
Scaling to Even Larger Deployments 
Using LoT we collected a dataset containing 710 days of data 
from 15 houses. To scale to hundreds or thousands of homes, 
based on our experience, the biggest challenge would be 
designing the in-home sensing infrastructure so that it could 
be installed by the home owner independently. 
Pragmatically, there is also the cost of provisioning sensing 
hardware to consider, but this is a trade-off between money 
and time: as we did in our study, a limited number of 
hardware kits can be rotated through homes to deploy in a 
larger number of sites over a longer period of time. 

Choosing sensors that can be installed by home owners 
comes with trade-offs, and we considered some of these 
approaches in our study design. For example, plug-in GPS 
trackers are available for cars, which would be a simple 
alternative to our vehicle presence sensor. But with GPS, the 
participant must agree to have their car location tracked all 
the time rather than only sharing when they are home. Also, 
we wanted real-time data in order to detect data collection 
issues as soon as possible, which requires a data service plan 
for each tracker. This increased the potential cost beyond 
what was feasible for our study. 

To sense energy use without an installation visit, we could 
have limited our participant pool to homes that have smart 
connected meters. We could have then inferred EV charging 
data from the whole house data with some loss of accuracy 

or recruited participants that charge their EV’s using 110 volt 
outlets who could self-install inline smart energy switches. 
These constraints might be an acceptable trade-off for future 
large scale studies, but for our initial study we wanted fine 
grained whole house energy use, separate sensing of car 
energy use, and EV’s charged using 240 and 110 volt outlets. 

These real-world challenges do not mean as a community we 
should give up on the goal of scaling field deployments. One 
advantage of using LoT is that we contributed our software 
driver for Bluetooth beacons back to the platform so that 
sensor can be easily used by others. As discussed in [4], 
another way to facilitate larger deployments is collaborating 
across research groups to deploy studies in pools of homes 
recruited by other research groups (and vice versa). This 
would increase the size of deployments and add geographic 
diversity while preserving a local contact for the home 
owners to help with installation or other issues. 
CONCLUSION 
As peak electricity demand becomes more acute, power 
companies are encouraging a shift in demand to off-peak 
hours. Electric vehicles offer the chance to shift when they 
are charged and to store electricity from less expensive, off-
peak hours for use during more expensive times. We 
outfitted 15 EV homes with sensors to record home 
electricity use, EV charging, and vehicle presence. We 
developed a fairly simple schedule of using the car battery to 
power the house during peak hours and charging the vehicle 
during non-peak hours, effectively reducing peak demand 
and saving money with tiered pricing.  

Using our recorded data, we showed that the batteries in EVs 
could power the homes during the expensive tier during for 
98% of the days in our dataset. Doing this would save 
homeowners money. At a 90% conversion efficiency, the 
average monthly savings from simple shifting of EV 
charging would be $10.91. The additional savings from 
powering the house from the EV would be $13.58/month. 
The conversion efficiency would have to drop to an 
unrealistically low 55% before the cost savings went to zero 
for powering the home from the EV. Powering the home 
from the EV would allow an average 7.6% savings on the 
monthly electric bill. An advantage of this approach is that 
the home would not have to pay for dedicated home batteries, 
but could use EV batteries for both transportation and home 
power, without any changes in their driving habits. 
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