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ABSTRACT 
This paper presents ElectriSense, a new solution for 
automatically detecting and classifying the use of electronic 
devices in a home from a single point of sensing. 
ElectriSense relies on the fact that most modern consumer 
electronics and fluorescent lighting employ switch mode 
power supplies (SMPS) to achieve high efficiency. These 
power supplies continuously generate high frequency 
electromagnetic interference (EMI) during operation that 
propagates throughout a home’s power wiring. We show 
both analytically and by in-home experimentation that EMI 
signals are stable and predictable based on the device’s 
switching frequency characteristics. Unlike past transient 
noise-based solutions, this new approach provides the ability 
for EMI signatures to be applicable across homes while still 
being able to differentiate between similar devices in a home. 
We have evaluated our solution in seven homes, including 
one six-month deployment. Our results show that 
ElectriSense can identify and classify the usage of individual 
devices with a mean accuracy of 93.82%. 

Author Keywords 
Infrastructure-mediated sensing, activity sensing, activity 
recognition, energy monitoring 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

General Terms 
Algorithms, Experimentation, Measurement. 

INTRODUCTION 
Low-cost and easy-to-install methods to sense and model 
human activity in the home have long been a central focus of 
UbiComp research. Sensing disaggregated electricity usage 
in the home (i.e., at the individual source level) has emerged 
as one particularly promising area for activity-inference 
research because of how often it reveals the resident’s current 
activity (e.g., stove usage implies cooking). In previous work, 

Patel et al. [15] introduced a single-point sensing method for 
automatically identifying the usage of resistive and inductive 
electrical loads. In this work, we focus on sensing a different 
class of devices, namely switched mode power supplies 
(SMPS), which are used in most modern consumer 
electronics as well as in fluorescent lighting. 

Devices that rely on SMPS have become increasingly 
prevalent because of their higher efficiency, smaller size, and 
lower cost compared to traditional power supplies. 
Manufacturers are increasingly employing SMPS in their 
products to meet minimum efficiency requirements (e.g., the 
Department of Energy’s Energy Star program [4]). For 
example, in one of our deployment sites, all lights and most 
appliances used SMPS. In contrast to Patel et al.’s approach, 
which sensed voltage transients from the 
activation/deactivation of resistive and inductive electrical 
loads, we examine the continuous EMI signals generated by 
all SMPS based devices due to their reliance on 
asynchronous high frequency oscillators for operation. 

In particular, our system, called ElectriSense, senses the 
electromagnetic interference (EMI) created by SMPS 
oscillators. We have found through experimentation that the 
EMI generated by SMPS has a highly repeatable frequency-
domain signature that can be sensed and identified 
throughout a typical home during device operation. Perhaps 
more importantly, we have found that these signatures are 
largely specific to a device’s circuit design and maintain 
consistent properties across homes. This is in contrast to 
much of the work in infrastructure-mediated sensing 
[3,6,15,16,17], which involve sensing techniques that require 
per-home calibration. Moreover, because we rely on a 
continuous noise signature, we can identify devices that do 
not generate transients such as those with “soft switches” and 
transient suppressors. Finally, given that Patel et al. [15] and 
ElectriSense actually sense different classes of devices, they 
are complementary rather than competing techniques. 

Through experimental trials in seven homes and one six-
month long deployment we show that ElectriSense can 
correctly identify and classify SMPS electrical events, 
reasonably well down to the individual source level (e.g., a 
particular TV, Laptop Charger, or a CFL Lamp). We also 
show that ElectriSense is robust to simultaneous device 
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activation and can reliably detect overlapping device 
activation events (one aspect of other infrastructure-mediated 
sensing approaches that is not often evaluated, e.g., [6,15]). 
Finally, we show that our approach works irrespective of a 
device’s plug-in location in the home and also that we can 
distinguish between two devices of the same model and 
brand. 

RELATED WORK 

Distributed Sensing 
Detecting and classifying electrical appliance activation has 
been done in the distributed model wherein each device has a 
dedicated sensor, which looks for device state change 
[14,18]. Device level sensing is conceptually straightforward 
but requires time consuming and expensive installation and 
maintenance. Indirect sensing techniques have also been used 
where researchers placed microphones, accelerometers and 
video cameras throughout a home to infer activity [2,5]. Such 
techniques are effective but require tedious installation and 
maintenance and may also raise privacy concerns in a home 
setting. A more recent technique for electrical event detection 
is to indirectly listen to the activation of switches and motors 
through microphones distributed through a living space [13].  

Single-Point Sensing 
Pioneering work from the 1980s in single point sensing of 
electrical events focused on the design of new in-line 
metering techniques for monitoring whole-house appliance 
usage [1,8,9]. Hart et al.’s approach used a current sensor 
installed by an electrician in-line with a home's power meter 
to monitor voltage and current waveforms for the incoming 
power to the home. Because of the limitations of low cost 
digital signal processors in the 1980s and 1990s, this work 
considered only line frequency at 60Hz and low order 
harmonics up to a few kHz. They relied on step change in 
power, the active and reactive power components of each 
appliance and the time of day statistics to detect and classify 
appliance usage. Additionally, most consumer electronic 
devices at that time did not employ SMPS, because of the 
immature state of SMPS technology and the absence of low 
cost, single chip SMPS implementations.   

Infrastructure-Mediated Sensing 
Recent advances in infrastructure-mediated sensing have 
provided an alternative approach to inferring in-home 
activity through the detection of events affecting the home’s 
utility infrastructure [3,6,15,16,17]. Our approach falls within 
this class of sensing systems, but provide a significant 
advancement over prior work. 

Previous IMS approaches for detecting electrical appliance 
activation from an ordinary outlet (without requiring in-line 
installation) by Patel et.al. [15] leveraged transients generated 
by mechanically switched incandescent, heating, and motor 
loads to detect and classify electrical events (continuous 
noise was only briefly mentioned). This work showed that 
transient noise is generated whenever a mechanical switch is 
turned on or off due to tiny arcs generated inside the switch, 
which excites the step response of the home's electrical 

wiring transfer function. Capturing and analyzing transient 
noise is a computationally expensive process, and requires 
that the system continuously capture and analyze every 
transient noise event for reliable detection. There is no way to 
coherently integrate these transient events to improve 
detection likelihood as they occur infrequently and are 
relatively weak due to their broadband distribution of signal 
energy.  

Transients are an extrinsic property of mechanical switched 
loads, making their characteristics unpredictable and hence 
requiring supervised training for each physical device. Thus, 
signatures learned from one device cannot be applied to 
another even if they are similar. This also poses a challenge 
for identifying mobile devices, as the transients generated by 
a particular device change as the device is moved from one 
location to another. In contrast, our approach leverages 
signals that manifest from an engineered process, specifically 
the particular circuit design and the individual components a 
device uses, thus making the signal learned from one device 
applicable to other similar devices within and across homes. 
This eases the training process by allowing crowd-sourcing 
techniques to be applied. 

Another key motivation for our work is the fact that most 
modern consumer electronic appliances are moving towards 
having a “soft switch”, i.e. unlike a mechanical switch they 
make use of a software driven push button that cycles the 
power to the appliance electronically (for example via the 
infrared remote control of a flat-panel TV). In such devices, 
the indirect activation of the device by software driven 
electronic switch minimizes the transient generated at the 
moment of activation. We observed several devices, such as 
LCD monitors and DVD players that did not generate any 
detectable transients. Fortunately, these software driven 
devices are nearly always SMPS-based. 

THEORY OF OPERATION 
The electrical noise present on a power line when a device is 
operational is called conducted electro-magnetic interference 
(EMI), which can be classified into two types: transient and 
continuous. Transient noise is characterized by the short 
duration for which it can be observed, generally few tens of 
nanoseconds to a few milliseconds. Continuous noise on the 
other hand can be observed for as long as the device is 
operational. Both transient and continuous noise can either be 
concentrated within a narrow frequency band or spread over 
a wider bandwidth (also called broadband noise). A compact 
fluorescent light bulb (CFL) is an example of a device that 
generates continuous noise, which is conducted over the 
power line due to its physical contact with the power line. 
Since a home's electrical distribution system is 
interconnected in parallel at the home's circuit breaker panel, 
conducted EMI propagates widely from a given device 
throughout the electrical infrastructure.  

Continuous noise is usually intrinsic to the device's operation 
and internal electronics. Appliances like grinders, fans and 
hair dryers that make use of a motor create voltage noise 
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synchronous to the frequency of AC power (60 Hz in the 
USA) and its harmonics (120Hz, 180Hz, etc.) due to the 
continuous making and breaking of electrical contact by the 
motor bushes. In contrast, modern SMPS based electronic 
devices generate noise that is synchronous to their power 
supply’s internal oscillator. 

 In contrast to traditional linear power regulation, a SMPS 
does not dissipate excess power as heat, but instead stores 
energy in an inductance and switches this stored energy in 
from the line and out to the load as required, thus wasting 
much less energy. The key to a SMPS’s smaller size and 
efficiency is its use of a power transistor to switch the stored 
energy at a high frequency, also known as the switching 
frequency. The switching frequency is much higher than the 
60Hz AC line frequency because at higher frequencies the 
inductors or transformers required are much smaller [7]. 
Typical SMPS operate at tens to hundreds of kHz. The 
switching waveform is adjusted to match the power 
requirements of the appliance it is powering. 

 

Figure 1: (Left) Circuit model of a SMPS with placement of the 
voltage probe. (Right) Frequency domain analysis at the voltage 

from probe showing EMI at 10 kHz. 

A CFL’s power supply employs the same fundamental 
switching mechanism to generate high voltages necessary to 
power the lamp. The switching action, which is the 
cornerstone of a SMPS’s operating principle, generates a 
large amount of EMI centered in frequency around the 
switching frequency. This phenomenon can be understood by 
modeling a simple DC-DC SMPS circuit that uses the same 
fundamental switching topology (See Figure 1). 

The large inductor L_PowerLine mimics the power line 
inductance. The SMPS is plugged into the power line. To 
measure the conducted EMI, we place a voltage probe V on 
the power line, which is analogous to having the single 
sensor plugged into the power line with a SMPS based 
device operational somewhere else. The switching frequency 
fc for the model is governed by the PER (period) parameter 
of the V_Switching component. We arbitrarily set it to 10 
kHz. Figure 1 shows a frequency domain plot of the noise at 
probe, which clearly shows that the power supply emits EMI, 
which is conducted over to the power line and is most 
prominent at the switching frequency fc (10 kHz here) and its 
harmonics. This is the same behavior that we observe when a 
SMPS based appliance is turned on in the home.  

In the US, the Federal Communications Commission (FCC) 
sets rules (47CFR part 15/18 Consumer Emission Limits) for 

any device that connects to the power line, which dictates the 
maximum amount of EMI a device can conduct back onto 
the power line. This limit is 66 dBuV for frequency range 
between 150 kHz to 500 kHz, which is nearly -40dBm across 
a 50 ohm load. The ElectriSense data acquisition system is 
sensitive enough to capture noise from -100 dBm to -10 dBm 
across a frequency range of 36kHz – 500kHz. 

 

Figure 2: Frequency spectrogram showing device actuation in a 
home. 

Figure 2 shows a frequency domain waterfall plot showing 
appliances being turned on and off. As is evident from the 
graph, when the device is turned on we see a narrowband 
continuous noise signature that lasts for the duration of the 
device’s operation. Also note that the noise center is 
strongest in intensity and then extends to lower and higher 
frequencies with decaying intensity, which can loosely be 
modeled with a Gaussian function having its mean at the 
switching frequency. This behavior can be attributed to the 
error tolerance of the components that make up the switching 
circuit core, as well as the characteristics of the power 
supply's load. If all the components were ideal, we would see 
a single narrow signal peak at the switching frequency. The 
error tolerance of SMPS components also allows for 
distinction between otherwise identical devices, such as a 
variety of units of the same model of CFL bulb. Finally, the 
power line itself can be thought of as a transfer function 
(difference in the inductance between the sensing source and 
the appliance) and provide additional discrimination among 
multiple similar devices. We show this experimentally later 
in this paper.  

 Dimmers also produce continuous noise due to the triggering 
of their internal triac switches, which can be used to detect 
and identify incandescent loads they control. In contrast to 
the narrowband noise produced by SMPS, a dimmer 
produces broadband noise spanning hundreds of kHz, which 
could be modeled as a Gaussian having very large variance. 
A detailed treatment of dimmers and differentiating between 
identical devices is presented later. 
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SYSTEM DESCRIPTION AND OVERVIEW 
Our prototype system consists of a single custom Power Line 
Interface (PLI) plug-in module that can be plugged into any 
ordinary electrical outlet in the home (Figure 3). The output 
of the plug-in module is connected to a high speed data 
acquisition system based on the Universal Software Radio 
Peripheral (USRP) that digitizes the analog signal from the 
plug-in module and streams it over a USB connection to a 
data collection and analysis PC running GNU Radio, which 
in real-time samples and conditions the incoming signal. The 
ElectriSense algorithms then watch for an event and extract 
features that are used to identify and classify the device 
causing the event.  

Though we tested our system on a 120V, 60 Hz electrical 
infrastructure, our approach can easily be applied to electrical 
infrastructure utilizing different frequency and voltage rating 
with little change to the hardware and no change to the 
software. For homes that have split phase wiring (i.e. two 
120 V branches that are 180-degrees out of phase), the 
coupling between the two phases allows us to monitor at a 
single location and capture events on both. The exception to 
this and further discussion is presented later in the paper. 

 
Figure 4. Block diagram of major components of our system. 

IMPLEMENTATION DETAILS 
In this section, we describe the various components of our 
prototype system (Figure 4) and present in detail the 
hardware design and software algorithms used for event 
detection, feature extraction and classification. 

Hardware 
To capture and analyze the electrical noise on the power line, 
we built a custom power line interface (PLI) module for our 
analog frontend. It is necessary for this module to filter out 
the AC line frequency (60 Hz in the U.S.) so that the 
spectrum analyzer or any analog-to-digital device is not 
overloaded by the strong 60Hz frequency component. The 
PLI consists of a high pass filter, which has an essentially flat 
frequency response from 50 kHz to 30 Mhz. The 3 dB corner 
is at 36.7 kHz giving us a wide enough band to look at the 
complete range of any conducted EMI (see Figure 5 for the 
schematic). The filter design also includes a 10 dB attenuator 
so that a constant 50-ohm load is presented at the input of the 
data acquisition hardware, irrespective of the signal 
frequency or the AC line conditions. For safety and isolation 
from the line voltage, high voltage capacitors are required. It 
should be noted that the polarity shown should be strictly 
followed, i.e., the line and neutral lines should not be 
connected in reverse and the isolation capacitors should be of 
AC-line rated polyester film type for safety. 

 

Figure 5: Schematic of the plug-in power line interface module. 

The filtered signal is then fed into the USRP, which acts as a 
general purpose analog to digital converter sampling at a rate 
of 1 MHz set through the software. The digitized signal is 
streamed from the USRP to our processing software over 
USB.  

Software 
The incoming time domain signal stream from the USRP is 
buffered as 2048-point vectors and FFTs of these are 
computed to obtain the frequency domain signal. The 2048 
points are spread equally over the spectral width of 500 kHz, 
which yields a resolution of 244 Hz per FFT bin. The FFT 
vector or frequency vector is computed 244 times per second, 
which is then fed into our event detection and extraction 
software. 

We found that most SMPS devices generate noise peaks that 
are 8 dB to 60 dB above the baseline. The baseline noise in a 
home varies unpredictably between -90 dBm to -70 dBm 
across the entire spectrum with a period of few Hertz. Since 
the variability of the baseline noise is high, we must average 
the incoming frequency vector over time to obtain a stable 
baseline. We use a sliding window average with a window 
size of 25. Using a window that is too small results in an 
increase in the false positives whereas a large window size 
increases the shortest duration between near simultaneous 
events that is needed for the system to detect them as separate 
events.  

 

Figure 3: Our prototype system consists of a single plug-in 
module, acquisition hardware and the supporting software 
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When the system first starts, it computes an average of 25 
frequency vectors and stores it as the baseline noise signature 
(Figure 6 Left) Thereafter, a new window is calculated every 
25 frequency vectors, and a difference vector with the 
baseline noise signature is computed. When a device is 
actuated and new noise in the frequency domain is 
introduced to the power line (Figure 6 Center), the difference 
vector reflects this change, thus segmenting the event (Figure 
6 Right). 

The event detection algorithm scans the difference vector to 
find any values that are greater than a predefined threshold. It 
should be noted that this is a global threshold that is set once 
and works across different homes. In our deployments, we 
found that 8 dB above the noise baseline was a sufficient 
power threshold.  Since the vectors in a window are 
averaged, if the window only partially overlaps with an 
event, the detection algorithm may still correctly detect it, but 
the difference vector will reflect a smaller magnitude. To 
mitigate this problem, when an event is detected, a new 
difference vector is calculated using the next window cycle. 
After the detection of an event, the baseline noise vector is 
updated appropriately so as to reflect the new noise floor of 
the power line.  

Our feature extraction algorithm finds peaks above the 
threshold using the difference vector and fits a Gaussian 
function to extract the mean, amplitude and variance 
parameters (Figure 6 Right). The change in amplitude can be 
positive or negative depending on whether the device is 
turned on or off. These noise signatures are always the 
inverse of each other for opposite state transitions. 

A feature vector for the suspected event is then created using 
the parameters of the center frequency, which is generally the 
global maximum frequency component. Other peaks may 
also be present as harmonics. We use K-Nearest Neighbor 
(KNN) with K=1 and a Euclidean distance metric with 
inverse weighting, which is well suited for this kind of low-
dimensionality data. These parameters were derived 
experimentally using a cross validation test over our entire 
dataset from seven different homes. 

IN HOME DEPLOYMENTS AND EVALUATION 
To validate our learning approach, we conducted 
experiments in seven different homes. We collected data 
from one house for a longer period, spanning six months and 
from multiple homes for a shorter period (spanning a single 

day). This allowed us to show the general applicability of our 
approach to a diverse set of homes as well as the long-term 
temporal stability of our sensing solution. Table 1 shows the 
summary of the homes used in our evaluation. 

ID 
Style/Built/ 
Remodeled 

Size/Floors 
No. of 
Test 

Devices 

No. of 
Events 

H1 
Apartment/1985/ 

NA 
750 sq. ft./ 1 flr. 10 135 

H2 
Single 

Family/2003/NA 
3000 sq. ft./ 2 

flrs. 
15 203 

H3 
Single 

Family/1974/2009 
1200 sq. ft./ 2 

flrs. + basement 13 170 

H4 
Apartment/1910/ 

NA 
450 sq. ft./ 1 flr. 7 108 

H5 
Single 

Family/1960/NA 
1700 sq. ft./ 1 

flr. 
13 198 

H6 
Single 

Family/1926/2003 
2800 sq. ft./ 2 

flrs. + basement 
20 404 

H7
* 

Apartment/2009/ 
NA 

657 sq. ft./ 1 flr. 16 1358 

Table 1: A summary of the homes showing the style, size, 
number of appliances we tested and the number of events (* 

Long-term 6-month deployment). 

Data Collection Procedure 
Our system was packaged such that it could be rapidly setup 
in a home. The laptop, data acquisition hardware and a 
wireless router were pre-configured, connected properly, and 
setup on a rolling cart. For each home, we picked at random 
an available electrical outlet that had two sockets and 
plugged the PLI module into one and used the other to power 
our laptop and the USRP. Our laptop and the USRP of course 
generate their own EMI but this noise is subtracted from the 
baseline. After the installation, we made a note of every 
appliance, electronic device, and light fixture that 
incorporated a switching power supply. This included 
incandescent lights that were driven by a dimmer switch in 
addition to any light fixtures with CFL bulbs. For dimmers, 
we only collected events at 0% and 100% dim levels, 
because of the challenge of accurately and repeatedly setting 
intermediate dim levels. More analysis on dimmers is 
presented later. The collected labels were then fed into our 
ground truth labeling software. We then went through the 
home in two phases.  

In the first phase, we actuated each appliance on and off five 
to six times individually to ensure that we captured an 

Figure 6: (Left) Background noise observed on a particular power line. (Center) A new device is turned on, producing EMI 
that introduces new signals to the power line. (Right) After background subtraction the new signal features are extracted. The 

resulting Gaussian fit and its features amplitude (A), mean (µ) and variance (σ) are also shown. 
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isolated signature for each appliance. Every time our system 
detected an event (i.e., when we turned on a device), the 
features were automatically extracted and sent to the labeling 
software’s queue running on an ultra-mobile Sony Vaio UX 
computer (UMPC). As events were being captured, we could 
label those events using the UMPC. This process was carried 
out for all of the devices in the home. 

For our second phase of data collection in each home, our 
goal was to collect data under a naturalistic setting allowing 
for overlapping and simultaneous events. To do so, (1) we 
asked the homeowner to perform certain activities (on an 
average three activities per home involving 2-4 devices 
each), such as watch TV, prepare a meal, etc. and (2) we 
actuated random appliances and/or logical groups of 
appliances such as turning on the DVD player, digital cable 
box, a gaming console and then a TV to simulate a TV 
watching experience through a universal remote. Events 
generated from these tasks were manually labeled. 

In addition to the devices already found in each of the test 
homes, we collected data from a laptop power adaptor, two 
CFL lamps and a camera charger that we took to each one of 
the deployment sites. To simulate a naturalistic use of each 
device, we moved them around in the home and plugged 
them into any available outlet.  This allowed us to analyze 
the stability of these noise signatures across different homes. 

The data collected by the labeling software was time 
stamped, labeled and stored in an XML database. Since we 
collect more features than required by our current approach, 
the XML database allows us to easily filter and parse the data 
with help of an XQuery to generate output data in a format 
that can be directly imported and processed by the Weka 
machine learning toolkit. 

Long-Term Deployment 
To test the temporal stability and long-term feasibility of our 
approach, we deployed our prototype system at one of the 
homes for over six months. Events were collected and 
labeled throughout this entire period manually using a slight 
variant of the labeling tool that was used in other homes. 
Every time an event was detected, the logging tool would put 
the extracted features in a queue and generate an audible 
beep. The home occupants were instructed to label the events 
with the electrical appliance they actuated using the labeling 
tool.  

The labeling tool was designed to have a highly streamlined 
interface, requiring only the selection of device labels from 
an onscreen selection list. If the user did not label an event in 
the queue for more than six minutes, it was labeled as 
unknown and purged from the queue. This feature allowed 
the home occupants to handle any erroneously detected 
events and ignore events when the occupants were unable to 
attend to the labeling tool promptly. Though a convenient 
feature, this also meant that we lost labels on actual events 
that the occupant missed or decided to ignore. However, the 

intent of this experiment was to gather as many ground truth 
labels as possible for an extended period of time.  

RESULTS AND ANALYSIS OF IN-HOME EXPERIMENTS 
In this section, we detail the datasets collected and present 
the results of our approach. 

Data Collected 
We collected a total of 2576 (Table 1) electrical events from 
seven homes. The largest number of events came from 
lighting, which tended to be either CFL- or dimmer-based. 
Most of the other detectable devices were common consumer 
electronic devices, such as LCD or LED TVs, gaming 
consoles, PCs, power adaptors, etc. 

Appliances such as dryers and electric stoves did not appear 
to generate events in some of our test homes. Generally such 
devices are large resistive loads and hence do not emit any 
high frequency noise. We did observe continuous noise 
events from a washer in H7. Out of all our test homes only 
H7 had a modern Energy Star compliant high efficiency 
washer that generated continuous noise, which was from its 
electronically controlled DC motor powered through a 
SMPS. Also, for most large appliances the use of a SMPS is 
considered negligible compared to the overall power 
consumption for the appliance. 

Classifying Specific Devices within the Homes 
To determine the classification accuracy of electrical device 
actuations in a home, we evaluate our classification approach 
using two different procedures. In the first, we evaluate the 
performance of our KNN-based classifier using a 10-fold 
cross validation for each home. In the second evaluation, we 
use a minimal training set (a single training example for each 
device of interest) in order to simulate a more practical and 
real-world situation. Table 3 shows the overall accuracy for 
classifying devices within each of the seven homes. Using 
10-fold cross validation, we observed an overall average 
accuracy of 91.75%.  

Upon analyzing the confusion matrices for each of the 
homes, we found that for both H5 and H6, there was 
confusion between some of the lighting (see Figure 7 for the 
confusion matrix). From our data, we observed that our 
classifier correctly identified similar light fixtures (i.e, the 
same model and brand) that were located in different rooms. 
However, H5 and H6 had rooms where the same models of 
fluorescent light fixtures were installed spatially near each 
other (1-2 feet apart), which produced very similar noise 
signatures. Thus, these particular lights did not have 
sufficient differences nor were they far apart enough along 
the power line to differentiate between those lights.  

Higher frequency resolution hardware may partially alleviate 
this problem, but with added costs. Also, for some 
applications, logically combining or clustering the lighting 
that are spatially co-located might be acceptable. Using this 
latter approach, Table 3 shows the performance of our 
classification scheme after clustering the same model of 
lights or devices that are 1-2 feet apart from each other as a 
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single event. This approach yields an increase in 
classification accuracy for H5 (92.4%) and H6 (91.8%) for 
an average accuracy of 93.82%. 

 

Figure 7: Visual confusion matrix highlighting misclassification 
due to physical proximity of similar fixtures in H5 and H6. 

10 Fold Cross Validation (%) 
Home 

As is Combined 

Minimal 
Training 

Set 

H1 96.29 96.29 93.46 

H2 89.65 89.65 83.73 

H3 96.47 96.47 93.52 

H4 97.23 97.23 93.81 

H5 85.35 92.42* 90.53 

H6 84.41 91.83* 84.61 

H7 92.85 92.85 85.13 

Total 91.75 93.82 89.25 

Table 3: The performance using 10-fold cross validation and 
minimal training for classification for each home. The results of 
combining the same devices that are spatially near each other as 

a single event are also shown (*). 

The lower accuracy of H2 was due to classifier confusion 
between two devices of the same brand that were on the 
opposite phase of the installation point of the PLI. Part of the 
second floor exhibited very weak coupling between the 
electrical phases, which required us to plug in the PLI on that 
phase and thus causing some of the signatures to look very 
similar. We later discuss ways to address this problem, such 
as using two different PLIs, one on each of the two phases or 
installing a single PLI at a split-phase 240 V dryer outlet. 

Since N-fold cross validation is generally optimistic and is 
not a true measure of the expected classification performance 
for a real world system, we perform a follow-up analysis 
using a minimal training set, i.e. a single event signature for 
each device to model and then apply it to a test set. For 
example, a homeowner would likely be only willing to 
provide a few training events for each appliance. Table 3 
summarizes the classification accuracies when using a 
minimal training data set. We found that this approach has an 
accuracy of 89.25% 

Stability of Signatures Across Homes 
Since no two homes have the exact same electrical 
infrastructure and can have drastically different baseline 

noise present on the power line, we must examine the 
portability of noise signature across homes, which is a 
prerequisite for allowing signatures from one home to be 
applied to a similar device in another home.  

We performed two experiments that together suggest the 
viability of applying a learned signal for a device in one 
home to a similar device in another. In the first, we show that 
the EMI signal of a device is independent of the home in 
which it is used, thus proving that the signal is intrinsic to the 
device’s functioning. Second, the signal is consistent to 
within the variance limits for multiple, but similar devices, 
that is, the signals from the same brand and model of devices 
are similar. 

Our first experiment comprised of collecting data for four of 
our own preselected devices in each of the seven homes and 
showing the signal portability through classification results 
across homes. The average accuracy of the ten trials for a 10-
fold cross validation test was 96.87%. For 3 of the 4 devices, 
the classification accuracy was 100%, strongly suggesting 
that these devices generated similar signals. Only one device 
performed poorly. Table 4 summarizes these results. 

Device 
10 Fold Cross 

Validation (%) 

Camera Charger 100 
Laptop 87.5 

23W CFL Lamp 100 
12W CFL Lamp 100 

Aggregate 96.87 

Table 4: The performance of four of our own devices across 
different homes using a 10-fold cross validation classification. 

We found that the laptop’s power adaptor was harder to 
identify because the extracted feature vector for this device in 
H6 looked slightly different than the other homes. Upon 
closer inspection, the noise generated by the laptop’s adaptor 
had a harmonic peak that was very close in amplitude to the 
center frequency. This marginal difference caused the peak 
detection algorithm to assign the first harmonic as the center 
frequency in H6, thus extracting a different feature vector. A 
simple approach to alleviate this problem is by employing an 
algorithm that classifies an event only if the distance between 
the event feature vector and the nearest neighbor in KNN is 
less than a certain threshold. If not so, the algorithm builds a 
new feature vector from the next strongest peak. Using this 
new method, classification accuracy for the laptop was 
100%. 

In our second experiment, we collected data for eight 20” 
Dell™ LCD monitors that were of the same model (from our 
research lab). This LCD model was also coincidently found 
in H5 and H7. We swapped out the EMI signature for one of 
the other 9 signatures obtained from a different home or 
building. For example, we trained the classifier using the 
signature from H7 and tested it in H5. This test ensured that 
if the signatures for any of the LCDs were different it would 
be misclassified as another device. All of our tests yielded 
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100% accuracy suggesting that similar make and model 
devices produce similar signature irrespective of the home or 
building they are in, implying the feasibility of crowd 
sourcing to obtain device signatures. 

Temporal Stability of Noise Signatures 
For any signature or fingerprint-based classification system, 
temporal stability is important. The classifier must perform 
well for months (or ideally, years) without requiring frequent 
re-training, which necessitates that the underlying features to 
remain stable over time. 

To show the stability of our noise signatures over time, we 
chose devices from our long-term deployment dataset, in 
particular those that met two criteria: (1) devices were fixed 
in their location during the duration of the deployment and 
(2) they were not altered in any way, for example light bulbs 
were not replaced. For these devices, we extracted randomly 
selected EMI signature vectors spread over the period of the 
6-month evaluation. 

 

Figure 8: Variation of features over 6 months for four devices 
shown in the feature space. Note that no cluster overlaps. 

Figure 8 shows the temporal stability or variation of the 
signatures over time for four randomly chosen devices by 
visualizing the feature vectors in the feature space. We 
observed that the long-term temporal variation was similar to 
what we observe in the short-term temporal variation in these 
devices and that none of the clusters overlapped. 

To better understand how temporal variation effects the 
classification accuracy over time, we generated test sets for 
each device consisting of all events that happened more than 
one week prior to the last day of the deployment and a 
training set consisting of events from all devices that 
happened in the last week. This setup ensured that, if the 
EMI signatures in the test set deviated more than the distance 
between the device clusters that the classifier had computed, 
we would see misclassifications. We observed 100% 
accuracy with KNN classifier on our results, which indicate 
that the devices are largely stable over a long period of time. 
It is important to note that this long-term experiment was 
straddling the summer and winter seasons.  

DISCUSSION AND NEW INSIGHTS 
Using EMI for electrical event detection is a promising 
approach. In this section, we provide additional detail and 
insights that can shed some light on improving our overall 
approach as well the limitations and challenges we 
uncovered. This paper is primarily focused on event 
detection, but the EMI signal also provides rich information 
about the state of particular devices (i.e., the setpoint of a 
dimmer switch, the mode of a washing machine, the 
changing of TV channels, etc). 

Multiple Similar Devices 
Having a number of similar devices is a common occurrence 
in a home, such as having multiple TVs or, more commonly, 
lights that all use the same brand CFL bulbs. This can cause 
problems, especially if similar devices cannot be grouped 
into a single group. For example, grouping two ceiling lights 
in a bedroom may be acceptable, but grouping lights that are 
in different rooms or floors may not be. There are two 
potential solutions to this. 

First, the tolerances in components that make up the 
switching circuitry of a device can introduce enough 
variability in switching frequency such that the mean of the 
Gaussian fits observed on the power line are also shifted. 
Figure 9(a) shows a subset of the spectrum observed by our 
system showing the spectra of the noise generated by four 
CFL lamps of the same model that were purchased as a pack 
of four, thus ensuring that they came from the same 
manufacturing batch. Note that the spectra do not overlap 
even among the same batch of CFLs.  

Our current hardware is able to discern these subtle features 
only when observed in isolation, i.e., a line isolation 
transformer was used to create a noise free power line for this 
particular experiment. With higher ADC resolution and a 
larger FFT, this shortcoming may be overcome. Thus, 
increased resolution may give us better differentiability. 

Second, as the conducted EMI travels through the power line, 
it is affected in several ways, but most prominently the signal 
is attenuated as a function of the line inductance between the 
source of noise and the point of sensing. Thus, two identical 
devices generating identical EMI may look different at the 
sensing source depending on where the devices are attached 
along the power line, which we observed in our in-home 
experiments. 

To confirm this, we plugged a device in two different 
locations in a home and logged the raw spectrum data as 
sensed by our system. Figure 9(b) shows a spectrum of a 
small section of this data. The difference in amplitude can be 
used to differentiate between similar devices located in 
various parts of the home. This suggests that we might have 
found a way to determine the number of fixed devices 
present in the home (i.e., the number of CFL lights in the 
house or the number of a particular type of TV).  
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It should be observed that only the amplitude varies 
prominently as a function of the position of the device in the 
home. Other features such as the mean and variance of the 
Gaussian remain relatively stable. It is these stable subset 
features that allow us to correctly identify a mobile 
appliance, such as a laptop adapter despite changes in its 
position in a home. It also allows reuse of signature from one 
home to another without re-training for similar devices. Thus, 
the stable subset features can be used to identify which 
device (CFL, TV etc.) and the amplitude can be used to 
resolve the instance (TV1, TV2 etc.) in a particular home. 

The probability of two different types of devices having the 
same Gaussian fit mean and variance is small. For 
independent EMI signals, it is 1/(FFT Size) if we only 
consider the probability of two devices having the same 
mean frequency. In practice, since we use not only the 
location, but also parameters of a fitted Gaussian, the true 
probability is likely much lower.  

Dimmers 
Unlike SMPS based devices, dimmers generate a wide band 
signal from their internal triac switches. Since our system is 
designed around a Gaussian fit in the feature extraction 
phase, we model the broadband noise emitted by a dimmer 
with a Gaussian distribution, even though a band-limited 
uniform distribution would be more appropriate. Thus, we 
found that for dimmer controlled devices we observed 
Gaussian fits with very large variances. Figure 9(c) shows the 
EMI signal generated by a dimmer at various dim levels.  

The difference in the signature generated at various dim 
levels opens up the possibility for our approach to identify as 
well as infer the dim of such devices device. Since it is not 
possible to train at different levels, we would need to build a 
model for the noise characteristic and how it is affected by 
the dim level or conduction angle of the triac. 

Additional Features 
The performance and robustness of a classification algorithm 
is only as good as the features being used, so it is desirable to 
explore and extract more advanced features from the 
underlying signals. During our experimentation we observed 
multiple potentially useful features that could be used in 
future classification work. Several devices produce a 
characteristic EMI pattern that lasts for a short time when 
they are switched on, i.e. they produce narrow band transient 

EMI while the SMPS is starting up. These transients are 
lower frequency than those described by Patel et al. [15]. 
Figure 9(d) shows a short burst of EMI that most CFL lamps 
produce when first powered up. The short burst comes from 
the ignition circuitry in a CFL, which is required to warm the 
lamp up for operation [10]. Similarly, other devices such as 
modern TVs and DVD players that have multiple power 
supplies and supporting electronics also produce start up 
noise signatures that may provide additional information for 
determining the category of the devices. 

In our current implementation, the algorithm design assumes 
that the mean or location of EMI peaks do not change when 
the device is operational. This may not be true for certain 
devices. We have come across a particular brand of a LCD 
TVs, where the switching frequency of its power supply is a 
function of the screen brightness, thus causing the mean of 
EMI peaks to shift as the content on the screen changes. Our 
current algorithm will report a new event every time such a 
change happens, which could overwhelm the system. A new 
approach may be to lock onto the time varying noise peak 
and extract temporal features or templates. 

Certain motor based devices such as a washing machine or a 
dishwasher generate low frequency periodic noise patterns in 
their motor controllers, which could be used to identify the 
device and its state. For example, in H7, we observed that the 
clothes washer in its wash cycle produced intermittent noise 
at roughly 0.1 Hz in contrast to constant noise while in its 
spin cycle. Such features can be used to build a finite state 
machine or a statistical model for more detailed 
classification. 

Simultaneous Events 
Our current implementation can detect near simultaneous 
events as close as 102 milliseconds (ms), that is, two events 
that occur more than 102 ms apart can successfully be 
detected as separate events by our current implementation. 
This is based on our current sampling frequency and 
averaging window size. If simultaneous events happen in 
shorter than 102 ms duration, they are detected as a single 
event, and the features extracted are a collection of features 
from multiple devices. Thus, the underlying features remain 
intact, but are reported as one event. A new classification 
approach may be able to separate out these compounded 
features to identify individual devices. 

Figure 9: (a) Small, but discernable variation in the mean of the EMI peaks for four same model and brand CFLs. (b) Same CFL 
lamp plugged into different regions of the home producing EMI amplitude variations. (c) Band limited EMI generated by a 

dimmer shown at various dim levels. (d) Startup burst of EMI signal generated by CFL lamps on ignition. 
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End User Calibration 
Since ElectriSense employs a fingerprinting based approach 
for device identification, it requires a training process to learn 
the parameters of various devices in a home. Like any such 
approach, this is generally accomplished by having the user 
go through actuating each device at least once.  

Fortunately, our approach benefits from the portability of 
signature across homes, which allows end users to share their 
device signatures, potentially through crowd sourcing. In 
other words, an end user may be able to access an online 
database of popular consumer electronic device signatures 
submitted by other users who have gone through a calibration 
process. Additionally, since the EMI that we sense is an 
engineered signal, it may be possible to generate such 
signature databases without physically actuating a device or 
having physical access to it. This can be realized by mining 
information from a device’s FCC compliance report, which 
lists the frequency and raw magnitude in dBuV for various 
noise peaks it emits. An example compliance report for a PC 
power supply is shown here [12]. Mining the datasheets of 
the internal integrated circuits and oscillators found in 
consumer electronic devices are other sources for this 
information. 

Phase Coupling 
We observed strong signal coupling or crosstalk across 
phases in most homes, including larger homes like H5 and 
H6. However, for H2 we found that for some parts of the 
home, which were on the opposite phase from the sensor it 
was very difficult to detect events. Either installing two PLIs 
(one on each phase) or installing the PLI to an available 240 
V outlet where both phases are present (typically for a dryer) 
can address this problem. Installing two PLIs would allow 
the system to capture events from both phases but also 
increases the chances of similar looking signatures for two 
similar devices. This can trivially be addressed by knowing 
which of the two PLIs detected the event. 

CONCLUSION 
We have presented a significant new advancement in single-
point sensing solution for whole-home electrical event 
detection. This work leverages the trend towards more 
energy efficient and low-cost switch mode power supplies for 
consumer electronic devices. The EMI generated by these 
power supplies allow us to isolate and classify the occurrence 
of unique electrical events. Our initial results both validate 
the effectiveness of our approach and provide a basis for 
future analyses and improvements. Our new strategy shows 
significant promise as a practical, low-cost solution for 
providing disaggregating electrical information for energy 
monitoring and ubiquitous computing applications.  
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