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ABSTRACT 
In this paper, we present a significant improvement over 
past work on non-contact end-user deployable sensor for 
real time whole home power consumption. The technique 
allows users to place a single device consisting of magnetic 
pickups on the outside of a power or breaker panel to infer 
whole home power consumption without the need for 
professional installation of current transformers (CTs). The 
new approach does not require precise placement on the 
breaker panel, a key requirement in previous approaches. 
This is enabled through a self-calibration technique using a 
neural network that dynamically learns the transfer function 
despite the placement of the sensor and the construction of 
the breaker panel itself. We also demonstrate the ability to 
actually infer true power using this technique, unlike past 
solutions that have only been able to capture apparent 
power. We have evaluated our technique in six homes and 
one industrial building, including one seven-day 
deployment. Our results show we can estimate true power 
consumption with an average accuracy of 95.0% during 
naturalistic energy use in the home. 
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INTRODUCTION 
Energy conservation and eco-feedback research continues 
to be an important focus in the Ubicomp and HCI 
communities. Given that 28% of U.S. energy consumption 
is directly contributed by household activities [3], the home 
is a natural place to study. However, just obtaining whole 
home power consumption information in real-time by 
homeowners or even researchers is not a simple task. For 
instance, certain smart meters provide data at 15 minutes          

 
Figure 1: Left: Contactless power consumption sensor on the 
breaker panel; Right: An interface showing whole-home total 

power consumption in real-time. 

intervals, however gaining access to that information is 
challenging due to closed-source and often private 
protocols and application interfaces. The most common 
approach to date is to install commercially available CTs 
inside the breaker panel. However, safely installing this 
device requires hiring a trained electrician as it involves 
placing a sensor around the main electrical feed in the 
breaker panel. Most researchers and homeowners do not 
have the training or confidence to do such an installation. In 
fact, the National Electric Code (NEC) has strict rules on 
the requirement of professional installation of CTs. In 
addition, certain U.S. states disallow CTs to be installed 
inside the breaker panel at all, in which case an expensive 
pass through meter solution is required. The latter requires 
involvement of the utility company as an end-user cannot 
tamper with or alter the installation of an electricity meter. 

To address this challenge, in previous work Patel et al. [12] 
introduced a contactless power consumption sensor that 
reduces such deployment burdens by offering a “stick on” 
sensor that goes on the outside of the breaker panel. This 
technique utilized magnetic sensors to sense the magnetic 
field induced by the 60Hz current flowing through the main 
lines inside the breaker panel. While this initial work was a 
step towards simple and easy to deploy non-intrusive power 
monitoring, there are some important limitations to 
consider. First, the existing approach requires the user to 
precisely position the sensor on the panel, which is a 
difficult task for an end-user to perform. Second, the 
approach assumed a linear transfer function between the 
magnetic sensors and the current, which limits it’s accuracy 
to a small current range. Third, the approach did not take 
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into account the small fields generated by the various 
branch circuits that may reside in the area directly behind 
the magnetic sensors. Fourth, the previous approach was 
only able to infer apparent power and not true power since 
it does not take into account the phase information between 
the voltage and current waveforms. This is an important 
limitation as it is not able to accurately infer power use of 
highly inductive loads, which now tends to constitute much 
of the power consumption in a modern home (CFLs, LEDs, 
HVAC, Computers, TVs, etc). In addition, researchers in 
the energy disaggregation community have limited utility 
with just the apparent power data. 

In this work, we have significantly improved this previous 
work by introducing a self-calibrating technique that 
dynamically generates a multi-order transfer function 
between the magnetic sensors and the actual current across 
the entire range of power use in the home. Instead of 
mathematically modeling the transfer function a priori, we 
use a learning approach to generate this transfer function 
for each home, which is less susceptible to differences in 
breaker panel design and construction. In addition, it 
removes the need for precise placement of the sensor 
because it takes into account “interference” from any 
branch circuits. Prior work [12] has also assumed that a 
plug-in calibrator would draw known power loads to fit a 
transfer function. However, the drawback of this approach 
is that it assumes the calibrator is able to draw a large range 
of loads (~0-20 kW) depending on the size of the home and 
types of appliances present. This is impractical because of 
safe heat dissipation limitations in addition to being 
difficult to build it in a small form factor. In this work, we 
introduce a technique that uses a calibrator with a much 
smaller range (0-300 W) by leveraging the insight that we 
can use a home’s natural electrical activity throughout the 
day as a part of the self-calibration sequence.  

The main contributions of this work are as follows: 

• This approach has the ability to predict the phase angle 
between the current and voltage to infer true power. 
This is equivalent to predicting the waveform itself and 
not just the magnitude. 

• A self-calibrating approach that does not require 
precise placement of the sensor on the breaker panel 
and uses the actual power use throughout a day for 
calibration. 

• A neural network-based learning approach that 
dynamically generates a multi order magnetic sensor 
transfer function. 

Through deployments in six homes and one industrial 
building we show that this new approach can predict RMS 
current and phase angles with an accuracy of 96.0% and 
94.3%, respectively. Overall it can predict real power 
consumption with an accuracy of 95.0% in real-world 
naturalistic energy use. We also evaluated our technique by 

placing the sensors in different non-ideal positions on the 
panel and achieved an accuracy of 97.4% across all the 
placements. This high accuracy is ideal for many 
applications such as energy disaggregation, activity 
inference, and eco-feedback while reducing the barrier to 
entry by greatly simplifying the installation process. Also 
note that a ~5% maximum error in our proposed system is 
much better than the commonly used IEEE C57.13 C-class 
CTs (rated for <=10% error). Very expensive CTs with 1-
2% error are used in specialized applications such as 
precision current measurements, and in those application 
scenarios we assume that the end user would have access to 
the current carrying inductors. 

RELATED WORK 
There are many commercially available sensors for 
measuring and showing appliance level energy use at each 
outlet, such as the Conserve Insight™, GreenSwitch, and 
Kill-A-Watt™. In case of whole house power consumption, 
some of the popular commercially available solutions are 
The Energy Detective and (TED®) and the PowerCost 
Monitor. Installing TED involves placing a CT around the 
main electrical feeds (mains) inside the breaker panel, 
which requires a professional installation due to high-
voltage shock hazard. On the other hand, PowerCost can 
easily be installed by a homeowner without hiring an 
electrician, but requires either electromechanical meters or 
electronic meters with an exposed and compatible optical 
port. Hence it is constrained to specific type of meters with 
its update rate as well as performance dependent on the 
meter and exposed data ports of the same.  

Because of such limitations, contactless solutions are 
emerging that try to infer power without having direct 
access to the mains. Cooley et al. [5] describes one such 
solution that measures the current at individual circuit 
breakers using a magnetic sensor placed on the face of the 
breaker switch  itself. While this approach is promising, 
most electric codes do not allow anything to be placed on 
the circuit breakers for extended use because of the 
potential interference with its life-saving cutoff operation. 
In addition, a sensor would have to be placed on each 
circuit breaker to gather whole home power use or on the 
main circuit breaker, if present. Lorek et al. [11] also 
describes a similar magnetic field based approach where a 
magnetic sensor have to be placed on every breaker switch 
on the panel. In addition to requiring a number of sensors, 
this system also needs to be calibrated manually by the 
homeowner, which might be impractical and extremely 
difficult for a homeowner to perform. 

Patel et al. proposed a solution that uses a pair of magnetic 
sensors placed on the face of the breaker panel (instead of 
the breakers) to sense the current flowing through the main 
bus bars [12]. A set of LEDs were used to help guide the 
user on placement. Similar to our approach, this system also 
used a load calibrator to create a transfer function. 
However, they assumed a linear transfer function and that 
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the calibrator could emulate the entire power range of the 
house. Despite the use of LEDs to help with placement, 
other branch circuits and stray wires impact the magnetic 
field under the sensors. In our investigations, we found that 
the state of the magnetic flux changes throughout the day as 
various appliances are used. This means that the LEDs only 
help if the breaker panel state remains the same after the 
initial installation. Also, the previous approach only 
inferred apparent power and didn’t take into account the 
phase angle between current and reference voltage.  

To overcome these limitations, we use a calibrator with 
smaller loads and leverage the natural household electrical 
activities throughout the day to generate a transfer function 
for the entire range of power use in the home. Because of 
the in situ dynamic model, our system is not limited to 
perfect placement of sensors. In addition, because of the 
capability of predicting absolute current waveform, we can 
also calculate phase angle in real time. To the best of our 
knowledge, this is the first attempt to solve the problem of 
calculating phase angle using a single set of magnetic 
sensors. 

This work would allow researchers in the energy 
disaggregation community easy access to power data in a 
home without the need for professional installation. Many 
approaches have been developed that use power usage 
analysis to infer appliances use [1,7,8,14]. Approaches that 
use alternative ways to infer appliance could use our 
approach to associate the actual power use to each inferred 
appliance event [2,4,9,13]. 

SYSTEM DESCRIPTON AND ALGORITHMIC DETAILS 
Breaker panels in the U.S. comply with the General Electric 
“style” based on the guidelines from National Electrical 
Manufacturers Association (NEMA). Briefly, there is a 
front surface with an access door that covers the interior 
where main electrical feeds or lines are connected to the bus 
bar. In this work, we have focused on typical U.S. breaker 
panels such as the shown in Figure 2, however the approach 
presented in this paper can scale to varying designs of 
breaker panels and to those in other countries as our 
learning approach is dynamic and calibrates in-situ. 

Theory of Operation 
Our sensing approach involves computing the current 
consumption in the home by inferring the current being 
drawn through the main feeds/legs coming in the home at 
the breaker panel. In general, most homes in the U.S. have 
split single-phase electrical service where each leg is 180 
degrees apart from each other. Industrial buildings usually 
have three-phase service where three phases are 120 
degrees offset from each other. In either case, we need to 
predict the current flowing through all the legs. The field 
generated from the main legs allows us to estimate the 
current flow through each leg separately, which radiates a 
few centimeters from the wire and even through the layer of 
sheet metal. In the ideal situation, magnetic field scales 
linearly with the current. However this relationship is not as 

simple in practice because of fields from all neighboring 
wires, reflected magnetic fields, and magnetic nonlinearities 
of the sheet metal.  

 
Figure 2: Interior of a typical U.S. three-phase breaker panel. 

Three main feeds are connected to the bus bar. Split-phase 
systems have two electrical feeds instead of three. 

To sense the radiated magnetic field, we use a set of 
magnetic pickup sensors placed on the outside of a breaker 
panel. To convert this sensed magnetic field to current, we 
need to determine a transfer function, i.e., given the sensed 
magnetic flux, determine what the underlying current flow 
in the main leg is that induces the flux. We infer this 
function using a calibrator plugged in an electrical outlet 
that draws a known amount of current (by powering a 
resistive load) at a given time while the sensor senses the 
change occurring in the magnetic field due to that current 
draw. In future, we imagine the calibrator embedded in an 
in-home energy display. 

At first we create an initial transfer function using this 
collected calibration data which only works for a small 
range (limited to the range of loads the calibrator can 
provide) of magnetic field values. We store this range as 
calibrated region while keeping track of the present 
magnetic sensor values. These values change over time as 
appliances are used in a home. Every time these values 
reach an un-calibrated region, the calibrator is commanded 
to pull a small load. The difference in the observed 
magnetic field signal at that level is used to update the 
transfer function.    

In the rest of this section, we describe the hardware and 
software of our prototype implementation. We primarily 
focus on the intuition behind using a machine-learning 
model and describe its use in creating a dynamic transfer 
function. It should be noted that during the rest of the 
description, we assume a home environment having two-
phase power supply, however our system scales to a three-
phase industrial setting as well.  
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Hardware 
Our prototype system consists of two components: a Sensor 
unit and a Calibration unit. Figure 1 shows a sample 
placement of the sensor unit on a breaker panel. The data 
from this unit is collected using a DAQ (National 
Instruments USB-6259) connected to a laptop. Figure 4 (a) 
shows a calibration unit installed in an electrical outlet. The 
calibration unit is also connected to the same laptop. The 
laptop sends the control logic to the calibration unit based 
on the captured data from DAQ.  

 
Figure 3: The sensor unit consists of four magnetic pickup 

sensors surrounded by some permanent magnets. 

Sensor Unit 
The sensor unit (see Figure 3) consists of four magnetic 
pickup sensors (we use RadioShack removable telephone 
pickups. Model no: 07C12) surrounded by permanent 
magnets.  The sensors detect magnetic field generated from 
the 60 Hz current flow from the legs behind the panel (as 
well as some of the branch circuits). The surrounding 
magnets are placed to reduce the effect of magnetic 
nonlinearity of the sheet metal located in between the main 
lines and magnetic sensors.  Briefly, the time difference 
between the actual current waveform and sensed magnetic 
waveform is depended upon the magnetic saturation and 
permeability of the material. Saturating the magnetic field 
reduces the nonlinearity induced by the sheet metal. In 
other words, the nonlinearity of the phase difference 
between the actual and sensed waveform reduces, which 
plays a key role during the phase angle calculation. We 
discuss the effect of this phenomenon later in the 
deployment and results section. 

Calibration Unit 
Our system consists of two calibration units installed in two 
different outlets, each on a different leg. Each unit briefly 
draws a series of known loads (0-300 W) for automatic 
calibration described before. It also senses the line voltage 
for calculating true power. 

The calibration unit consists of four high wattage resistors 
(we use Ohmite chassis mount resistors. Part no. 
TGHLVR100JE) connected in several series and/or parallel 
combinations through a set of relays. A microcontroller 
drives the relays to provide 25 W, 100 W, 200 W, and 
300 W loads. 

Figure 4 (Right) shows a zoomed in view at the calibration 
unit. It should be noted that in previous work, Patel et al. 
[12] also used a calibrator to model step power changes. 
However, they made an assumption of the calibrator pulling 
a load up to ~20 kW depending on the appliances present in 

a home, which is impractical to build in practice because of 
the large and unsafe heat dissipation requirements. In 
contrast, our calibrator only pulls up to 300 W and 
leverages the actual electrical activities in the home to 
calibrate the entire range.  

Figure 4: Left: Calibrator unit installed in one of the outlets; 
Right: Closer look at the calibration unit 

Software Implementation Details 
The four magnetic sensors (S1, S2, S3, and S4) shown in 
Figure 3 sense the magnetic field generated from each leg 
of the breaker panel. Our goal is to generate a transfer 
function that converts these magnetic fields into current 
waveforms flowing through only each of the main legs. 
Since we are interested in predicting real power, we need to 
predict both the RMS value of the current waveform and 
phase angle between the current and voltage waveform. 
Therefore we decided to predict the current waveform 
instead of just the RMS value.  

Creating a transfer function to compute the current 
waveform given the magnetic flux is non-trivial because of 
challenges posed by fundamental characteristics of breaker 
panel and the sensed magnetic field:  

• Stray Magnetic Flux: In addition to the main feeds, 
breaker panel also consists of other electrical wires 
going through all the breaker switches. There are also 
wires passing around the main lines and each of those 
radiates good amount of magnetic field depending on 
the current flowing through them. Figure 2 shows a 
sample illustration of this situation. The magnetic 
pickup sensors catch the magnetic field radiated from 
all them. However, we are only interested in the 
magnetic field radiated from the main lines. All the 
magnetic field radiated from the surrounding wires 
need to be eliminated during the prediction. In other 
words, the transfer function should be able to identify 
flux changes caused only by the two main legs. 

• Position of Sensor: The amount of magnetic field 
sensors receive depends on the distance between the 
legs and sensors. Our goal is to create a placement 
invariant system that works on any position of the 
breaker panel. Hence the transfer function should 
accommodate any distance between the legs and 
sensors. 

• Isolating flux from each main leg: Current flowing 
through each line contributes to the sensed magnetic 
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field of all four sensors. However, we don’t know a 
priori how much each line contributes to each sensor. 
For example in Figure 3, the leftmost and rightmost 
magnetic sensors are probably influenced mostly by the 
leftmost leg and rightmost leg, respectively. But the 
ratio of influence is unknown. For the two middle 
sensors, the scenario is even more unpredictable. The 
transfer function should be able to figure out the ratio 
by which each leg influences each sensor.  

• Breaker panel wiring uncertainty: Finally, despite 
having guidelines from NEMA and NEC, internal 
wiring of breaker panels varies a lot among each other 
depending on the skill of the electrician who installed 
it. The transfer function should be able to work with 
any breaker panel with any type of wiring.     

Because of all these characteristics that vary across 
different breaker panels, same amount of electrical load 
induces different amounts of magnetic field in different 
panels. In fact even in the same panel with the same 
positioning of sensor unit, the relationship between load 
and magnetic field depends on the existing magnetic field 
inside the whole panel. For example, let us say that the 
baseline current through one leg is I1 and a positive change 
of Ich amount results in a positive change of Sch1 in S1. If the 
baseline current changes to I2, the same positive Ich change 
will cause a different amount of change Sch2. Depending on 
how the magnetic fields radiated from different wires and 
their constructive or destructive interference, the value of 
Sch2 could even be negative despite a positive Ich value. 

In summary, the relationship between the electrical current 
and sensed magnetic field is nonlinear and depends on the 
existing baseline magnetic field and presence of other 
magnetic fields. To accommodate this variability and 
nonlinearity, we observed that we can create multiple 
polynomial equations for each “state” of the breaker panel. 
Thus, if we can define the state in terms of magnetic flux, 
we can build a function for each state. Such a problem is 
well suited for machine-learning techniques; when given 
states as inputs, we need to learn a function. We use a 
neural network as it essentially learns a polynomial function 
to predict output from input.  

Constructing Neural Network Model Using the Calibrator 
As we mentioned previously, the calibrator can cycle 
through a series of 25 W, 100 W, 200 W, and 300 W loads. 
Right before the calibrator turns on a load, the system starts 
tracking the sensor values. Once the load is on, it causes a 
change in the total current and in-effect the magnetic flux. 
This change in flux is recorded by the system. Therefore for 
each calibrator action, our system constructs a training 
instance for the neural network. Structure of such an 
instance is shown in Figure 5. First 8 columns of every row 
are features to the learning algorithm. 9th column is the 
output value that the algorithm will try to learn. The neural 
network consists of one input layer, one output layer, and 
two hidden layers having five neurons in each of the layers.  

S1p S1c S2p S2c S3p S3c S4p S4c Ich 

Figure 5:  Structure of a training row. First 8 columns are 
inputs and 9th column is output. 

Here S1p, S2p, S3p, and S4p are the RMS values of four 
sensors before the calibrator turns on the load. S1c, S2c, S3c, 
and S4c are RMS values after the calibrator turns on the 
load. Ich is the amount of current the calibrator added to the 
leg where it is plugged-in. Note that as the relationship 
between magnetic flux change and electrical current change 
depends on the existing magnetic flux present in the panel; 
we take both previous and current magnetic flux as our 
features instead of just taking the change of flux. 

In our implementation, the calibrator turns on each load for 
five seconds. Therefore after five seconds when the 
calibrator turns off the load, the system captures a similar 
event and calculates a similar training instance for the turn-
off event. It must be noted that we never have access to the 
absolute value of current going through each leg. The only 
a priori information is the amount of current change the 
calibrator is intended to cause to the leg. Consequently, our 
neural network will only be trained to predict the change in 
current value, not the absolute current value. 

However, our goal is to predict absolute current waveform 
going through each leg. To achieve this, we use a geometric 
translation technique that leverages the prediction model 
and natural electrical activities in a home to create a transfer 
function that converts sensor values to current waveform. 
Below is the description of our technique. For the sake of 
simplicity, we assume one magnetic sensor instead of four 
and one leg instead of two.  

Creating the transfer function 
Once the system starts, the only information it knows is the 
current RMS magnetic field of the sensor (Sk). Initially the 
calibrator pulls a series of 100 W, 200 W, and 300 W loads 
(3 times each) on top of this field. Hence the field value 
changes and the system keeps track of the maximum value 
of the sensor (Sk+1).  Now from Sk to Sk+1, it has 9 
calibration events. For each event, there are 2 training 
instances (one for on event and one for off event) as 
mentioned before. Therefore it gathers 18 training instances 
from sensor value of Sk to Sk+1 and uses these instances to 
train the neural network model described earlier.  

This results in a function (Fk) that can convert magnetic 
field change value from Sk to Sk+1 to current change value 
Ich (see Figure 6(a)). The goal is to find a function F that 
can convert any magnetic field value S to absolute current 
value I. Therefore the function Fk is placed into appropriate 
position of F. As already mentioned, the system never 
knows the absolute value of I, thus, a random y-axis value 
R is assumed and the function placed on (Sk, R) position. 
Figure 6(b) shows an illustration of this approach. 

Now the system does not know how the function looks like 
from 0 to Sk position. Therefore the function is extrapolated 
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Figure 6:  (a) Predicted function from a small range of sensor 

values (Sk – Sk+1). (b) Placing the function in appropriate 
position. 

from (Sk, R) to (0,0) as shown in Figure 6(b). Obviously this 
region does a poor job in translating S to I. Therefore the 
system waits until the value of S falls below Sk, following 
which the calibration process is reinitiated. Just as before, it 
results in a new function (Fj) that can converts magnetic 
field value from Sj to Sj+1 where Sj < Sk. Now if Sk < Sj+1, the 
system combines Fj with Fk and creates a new function that 
covers from Sj to Sk+1 (Figure 7(a)). Otherwise it keeps two 
separate functions Fj and Fk that covers ranges from Sj to 
Sj+1 and Sk to Sk+1, respectively (Figure 7(b)). 

As evident in Figure 7(a), the new extrapolated region is 
from 0 to Sj. If the sensor value ever falls below Sj (e.g. 
during night when most of the appliances are off), the 
system will initiate a new calibration cycle for the new 
region. Consequently, the system will recreate the whole 
function from the new position to Sk+1. 

On the other hand in Figure 7(b), the new extrapolated 
regions are from 0 to Sj and Sj+1 to Sk. In case the value of 
sensor is Sm where Sj+1 < Sm <Sk, the calibrator will trigger 
again and the system will create a new function from Sm to 
Sk+1. Note that this time the calibrator will only extrapolate 
from Sm to Sj+1 as the system already has a function from Sj 
to Sj+1. 

Similarly, if more appliances are turned on and the sensor 
value (Sn) exceeds Sk+1, the calibrator will trigger and the 
system will create a new function from Sn to Sn+1 
(Figure 7(c)). Again the system will only extrapolate from 
Sn to Sk+1 as it already has a prediction function from Sj to 
Sk+1. In other words, as time goes by, the extrapolated 
regions will shrink more and more and the system will have 
a better translation function from S to I. 

In summary, the key idea is that as the system runs in a 
house, it captures the usual electrical activities that 
increasingly provide it with a wide range of sensor values to 
learn from. As more appliances are turned on and off, the 
system gets a chance to calibrate for more and more ranges 
and the prediction function gets increasingly accurate. We 
will discuss the calibration requirement more in the results 
section. 

 
Figure 7: (a) Combined function: Sj - Sk+1. Extrapolated 

region: 0 - Sj (b) Two separate functions: Sj – Sj+1 & Sk – Sk+1. 
Extrapolated regions: 0 - Sj & Sj+1 – Sk (c) New function: Sn-

Sn+1. Extrapolated regions: 0 - Sj & Sk+1 – Sn. 

ANALYZING TRANSFER FUNCTION 

Prediction Using the Transfer Function 
Once the system starts, it creates a function F that takes 
four magnetic field values from four sensors (S1, S2, S3, S4) 
and translates them into current waveform I. Figure 8 shows 
a sample output of the prediction function F. 

Figure 8:  (Top) Four waveforms from four sensors S1 (blue), 
S2 (green), S3 (yellow), S4 (red); (Bottom) Predicted current 

waveform I through one leg. 

As shown in the Figure, the system is able to predict raw 
current waveform flowing through each leg. In other words, 
it can predict both the RMS current (I) and phase angle (θ) 
between the line voltage and current waveform. Predicting 
this θ is very important from an energy monitoring 
perspective as it can tell us the real power consumed by the 
household as oppose to apparent power.  

Phase Angle (θ) Prediction Analysis 
To predict phase angle θ, we rely on the following 
hypothesis: 

“Any change into the phase of the current waveform will 
also be reflected into the sensor waveform.”   

Figure 9 shows an example of the validity of the 
hypothesis. From the top graph, we see that voltage and 
current waveform are closely in phase with each other (θ	
  is	
  
small). If we carefully inspect the bottom graph, we can see 
that two of the magnetic waveforms (blue and red) have the 
same phase characteristics (zero crossing rise and fall in 
almost same timestamps) as the current waveform. In other 
words, our prediction function will have more influence 
from these two sensors while predicting current waveform. 
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Figure 9:  (Top) Current and voltage waveform are almost in 
phase. (Bottom) Two waveforms (blue and red) are following 

the current waveform. 

 
Figure 10:  (Top) Current waveform is lagging the voltage 

waveform. (Bottom) Two waveforms (blue and red) are still 
following the current waveform. 

Figure 10 (top) shows us a different scenario where the 
current waveform is lagging the voltage waveform by an 
angle θ.  From the bottom graph, we can see that blue and 
red waveforms are also following the current waveform. In 
other words, when current waveform is phased shifted by 
angle θ, four sensor waveforms will also get phase shifted 
by some angles θ1, θ2, θ3, and θ4. Obviously these angles 
will be different from the original phase shift θ. But the 
sensors that are mostly influenced by the current waveform 
will have a closer shift to the angle θ. Therefore the 
difference (θdiff) between original shift and sensed shift will 
be small.  

However due to the presence of the sheet metal between the 
main lines and magnetic sensors, the phase difference (θdiff) 
between the actual current waveform going through the 
lines and magnetic waveform sensed by the sensor becomes 
a nonlinear function of magnetic saturation and 
permeability of the material. The surrounding magnets built 
into our prototype sensor unit are intended to saturate the 
magnetic field and reduce the nonlinearity effect. As a 
result, θdiff becomes near constant and the transfer function 
predicts the phase angle with good accuracy. We discuss 
the accuracy of this phase prediction approach more in the 
next section.  

Visualizing the Transfer function 
Mathematically, the transfer function can be expressed as 
follows: 𝐼 = 𝐹(𝑆!, 𝑆!, 𝑆!, 𝑆!). As the function is 5 
dimensional (4 inputs and one output), it’s hard to visualize 
the effect of each sensor on the prediction output.  
Therefore we decided to decompose the visualization using 
results from each sensor. Figure 11 shows the result. For 
each of the first four plots, we change one sensor 
(S1/S2/S3/S4) value from 0 µT to 100 µT linearly keeping all 
the other sensor values to 0 µT. The bottom plot assumes 
all the four sensors increasing from 0 µT to 0.05 µT.   

Figure 11: Decomposed transfer function. Top four plots show 
predicted current (I) based on just one sensor value (S1, S2, S3, 
and S4). Bottom one shows the plotting of I based on all four 

sensors. 

Though the plotting is not ideal (in actual case, the current 
is predicted based on different combinations of all sensor 
values), it gives us certain interesting insight. As an 
example, after a certain field value, the predicted current 
values go down for all the sensors except S1. This 
phenomenon is observed because of the presence of 
multiple magnetic waveforms inside the panel. As the 
phases of these waveforms are different and they are always 
changing based on load condition, there are constructive 
and destructive interferences in different locations inside 
the panel. Hence depending on the location of the sensor 
placement on the breaker panel, some sensor senses 
destructive interferences when there is a positive change in 
the current waveform and exhibits an inverse relationship 
between current and magnetic field.  

If we inspect the bottom plot where all the sensor values are 
increasing, we find an interesting similarity between this 
plot and the topmost plot where only S1 is increasing. 
Although for all the other three sensors, the current (I) is 
decreasing after a while; it is always increasing in case of 
the bottommost graph. Essentially, this behavior means that 
the transfer function is mostly influenced by S1. In other 
words, this sensor reflects the current waveform more 
precisely than other sensors. The neural network learns that 
and increases the coefficient of this sensor more than other 
sensors. Therefore the amplitude and phase of the predicted 
current is mostly determined by S1. This is one reason why 
a machine learning based approach is more appropriate for 
this kind of problem, since it would be nearly impossible to 
fit a single polynomial for these observations.  

IN-HOME DEPLOYMENT AND EVALUATION 
To validate our technique, we conducted experiments in six 
different homes and one industrial building. Homes had 
two-phase wiring system and industrial building had three-
phase system. We collected data from one house for a 
longer period, spanning seven days and from other places 
for a shorter period (spanning two days). This allowed us to 
show the general applicability of our system to a diverse set 
of breaker panels as well as the longer-term temporal 
stability of our solution. Table 1 shows the summary of the 
homes used in our evaluation. 
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ID Panel type Style/Built/
Remodeled 

Size/Floors 

H1 (*) Two-phase Apartment/ 
1993/NA 

550 sq. ft./ 1 
flr. 

H2 Two-phase House/1972
/2002 

1250 sq. ft./ 1 
flr. 

H3 Two-phase Apartment/ 
1931/1994 

800 sq. ft./ 1 
flr. 

H4 Two-phase House/1960
/NA 

2220 sq.ft./ 1 
flr. 

H5 Two-phase House/1987
/NA 

1340 sq. ft./1 
flr. 

H6 Two-phase House/NA/
NA 

1452 sq. ft./1 
flr. 

I1 Three-phase Industrial 
/2003/NA 

NA 

Table 1: A summary of the homes showing the panel type, 
style, and size (* 7 days deployment). 

It should be noted that all of our data collection sessions 
were performed under a naturalistic setting with the usual 
home appliances comprising of inductive, resistive, and 
other complex harmonics appliances. We did not give the 
residents any instructions on the use of their electrical 
appliances or requested any changes in their daily routines 
and household tasks. Once installed, our system ran in 
background for the entire data collection session with no 
human interaction at all. 

Data Collection Procedure  
Our system was packaged such that it could be rapidly 
setup in a home. The sensor unit was placed on a breaker 
panel using double-sided tape. To collect the ground truth, 
we installed commercially available high end transformer-
based split-core CTs (99% accurate) inside the breaker 
panel prior to installing our sensor unit on the outside of the 
breaker panel. Both the sensor unit output and CT output 
were collected using the same DAQ device. 

We used long extension cables to bring the two different 
outlets of different phases closer to the laptop. We then 
plugged in the two calibrators in the outlets. The calibrators 
and the data acquisition device were connected to a laptop. 
The laptop controlled the calibration unit, recorded all the 
data from the data acquisition device, and performed all the 
algorithmic processing in real-time. We just recorded the 
original and predicted waveforms for post-experiment 
analysis. The whole software portion was written in Matlab. 

Deployment Results  

Accuracy Measurements 
For each of the deployments, we calculated the RMS 
current value in ampere, RMS line voltage in volts, and 

phase angle of the current waveform with respect to voltage 
in degree every second. These quantities are recorded both 
for ground truth current waveform (measured from the CTs) 
and predicted current waveform (output from the 
algorithm). Finally we calculate the real power 
consumption for both of them in every second as follows: 
𝑃 = 𝑉!"#×𝐼!"#× cos 𝜃. It should be noted that during 
accuracy calculation, we only considered the accuracy of 
calibrated regions. However after a certain time, most 
regions became calibrated and all of the data were taken 
into consideration.  

Results 
Our system requires installing two calibrators in two 
different phases of a house. Then, based on the calibrator 
data, it creates two different functions F1 and F2 for two 
phases P1 and P2. During the evaluation, we also considered 
the case of using just one calibrator in one of the phases. 
Therefore for each home, we calculated the accuracy for all 
three possible cases: using just one calibrator in P1, using 
just one calibrator in P2, and using both calibrators in both 
phases. It should be noted that during all of our 
deployments, both calibrators were installed in both of the 
phases all the time. But as we recorded both of the 
functions F1 and F2 for P1 and P2, respectively; we just used 
F1 to predict current in both P1 and P2 and F2 to predict 
current in both P1 and P2. Table 2 shows the summary of all 
the deployment results. 

From Table 2, we see that the average accuracy across all 
the deployments while using two calibrators is 95.0%. This 
shows the robustness of our system in predicting real power 
across different breaker panels and placement. It should be 
noted that [12] achieved an accuracy of 97.36%, however it 
only calculated apparent power step changes in a controlled 
environment with a few fixed appliances while our 
experiments calculated accuracy with real power obtained 
in real environment with natural electrical activities for 
longer durations. 

EVALUATION UNDER DIFFERENT CONDITIONS 

Effect of Placement on Accuracy 
As we claimed, our system does not rely on the precision of 
placement of sensors. In all of our deployments, depending 
on the structure of the breaker the accuracy remained 
unaffected. To further analyze the positioning effect on 
accuracy, we conducted an experiment in a controlled 
environment. Creating a controlled environment for this 
experiment was necessary, as we did not want the accuracy 
to get affected by different electrical conditions. 

Controlled Experiment Environment  
We placed the sensor unit at 6 different locations on the 
breaker panel (See Figure 12). For each of the locations, we 
maintained a controlled environment as follows:  

First we made sure that the environment is electrically quiet 
and no appliances are being turned on or off, after which we 
measured the baseline power consumption (C) of the 
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environment. We then turned on a 300 W load from the 
calibrator 3 times on top of the baseline and created a 
prediction function that works from C W to C+300 W. 
After that we turned on a 100 W fan, which brought the 
baseline to C+100 W. As we already have a function that 
worked from C to C+300 W, the prediction function was 
expected to perform well for the current load condition. 

After 10 seconds we turned the load off. We then turned on 
a 1300 W heater and went through the same procedure as 
described in the previous paragraph, that is, we calibrated 
the system from C+1300 W to C+1600 W. Finally, keeping 
the 1300 W load on, we turned on a 500 W rice cooker and 
repeated the same procedure to calibrate from C+1800 W to 
C+2100 W.    

 
Figure 12: Accuracy on different positions. Min accuracy: 

96.3%. Average accuracy: 97.4%. 

Accuracy Results  
Figure 12 shows the accuracy in each of the 6 positions. We 
observed that for all positions on the breaker panel, the 

minimum accuracy was 96.3% with an average accuracy of 
97.4%. This experiment confirmed that our approach works 
independent of sensor position on the breaker panel with 
high accuracy. 

Accuracy without Active Calibrator 
The longer our system runs in a house, the wider and more 
accurate our calibrated regions become. As it covers more 
of the house’s power consumption range, the calibration 
frequency further decreases as well. Thus, as long as the 
power consumption resides within the calibrated region, the 
calibrator can be turned off with little effect on the overall 
accuracy. To test this hypothesis, we performed an 
additional experiment.  

First, we ran our system for 24 hours in a home with all the 
existing appliances and the system calibrated for the region 
between 247 W – 5344 W, yielding an overall accuracy of 
95.7%. Next, we turned the calibrator off and introduced 
four new appliances (two bulbs of 125 W and 250 W, one 
fan of 100 W, and a heater of 700 W) with different load 
profiles than that was used during calibration. We turned on 
each of the appliances, both individually and in 
combination while keeping the total power consumption 
within the calibrated range. This resulted in a small drop in 
accuracy to 94.2%. This experiment confirmed that even 
with the calibrator turned off and new appliances being 
introduced, the overall accuracy does not significantly 
deteriorate as long as the consumption resides within the 
previously calibrated region. Moreover, this experiment 
also shows that the generated function does not overfit 
based on existing appliances. It is flexible enough to work 
with any new appliance as long as the total consumption 
does not exceed the calibrated region. 

ID Deploy
ment 
time 

(Hour) 

Power Range 
(Watt - Watt) 

Using both phase 
calibration (%) 

Using Phase 1 
Calibration (%) 

Using Phase 2 
Calibration (%) 

IRMS 
(Amp) 

cosθ Power 
(Watt) 

IRMS 
(Amp) 

cosθ Power 
(Watt) 

IRMS 
(Amp) 

cosθ Power 
(Watt) 

H1 (*) 168 252 - 4952 98.1 96.8 96.2 90.3 88.4 89.1 86.7 86.4 86.1 

H2 48 396 - 6840 95.6 97.7 96.7 89.2 84.7 86.6 91.3 85.9 87.7 

H3 48 598 - 6673 96.9 94.3 95.8 92.9 89.3 90.3 91.7 88.8 89.3 

H4 48 707 - 12373 97.2 95.3 96.0 90.4 85.5 87.4 85.3 81.0 84.9 

H5 48 441 - 5567 94.2 93.9 94.0 86.6 84.0 85.7 87.2 82.5 84.7 

H6 48 311 - 4110 93.3 90.8 91.2 87.4 82.1 83.1 88.1 86.4 86.7 

I1 48 1920 - 5982 96.8 91.6 95.2 83.1 78.3 80.1 84.3 81.1 82.9 

Aggre
gate 

456 252 – 12373 96.0 94.3 95.0 88.5 84.6 86.0 87.8 84.5 86.0 

Table 2: In-home deployment results. The results are shown with two calibrators (one on each electrical phase) and a single 
calibrator (* 7 days deployment). 
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Accuracy with Low Power Factor Loads 
Low power factor loads such as Switch Mode Power 
Supply (SMPS) appliances consume power in higher order 
harmonics of 60 Hz power. As our sampling rate is 9.6 kHz, 
the magnetic sensors capture harmonic contents up to 
4.8 kHz (79 harmonics). The key takeaway is that our 
magnetic pickup sensor is similar to CT in that both need to 
be sampled at a high enough sampling rate to capture 60Hz 
harmonics as desired by the end use case. The difference is 
that our sensor does not need to be around a wire and hence 
much easier to install, and for the same reason it needs to 
learn what the transfer function of the sensed magnetic 
field to the actual current flow is. 

Analysis of energy in harmonics 
We performed an experiment to understand how much 
power in a home can be attributed to the harmonics of a 
sensor where we could considerably reduce the 60 Hz. Our 
motivation for doing this analysis was to design a sensor 
where we could considerably reduce the engineering costs 
by reducing the sampling rate and data bandwidth 
requirements. We found that for a typical home over a 
period of a month, the 60 Hz harmonics contribute to only 
0.15% of total power. This suggests that a simpler sensing 
system could be designed when only total power 
measurement is of concern to the end user, albeit with a 
~0.15% loss in accuracy. Of course, the sensing system 
itself is capable of capturing all harmonics as mentioned 
above. 

Deployment experiment with SMPS appliances 
To further investigate the accuracy of our system with low 
power factor appliances, we performed a 7 day deployment 
in one of the homes with a bias towards SMPS appliances 
(two televisions, two laptops, an array of CFL bulbs, an 
active air conditioner, and frequent use of a microwave). 
This resulted in a small drop of of IRMS and cosθ accuracy, 
yielding 95.9% and 90.0%, respectively. The total power 
accuracy was 92.2%. This experiment further confirms our 
claim that the system also works with low power factor 
loads.    

DISCUSSION AND CONCLUSION 
We have presented a practical approach to automatically 
calibrate a stick-on real power meter that can be installed by 
the homeowner without manual calibration. This system 
does not require professional installation service of opening 
the breaker panel and installing CTs around the main 
electrical feeds. To the best of our knowledge, the approach 
presented here is the first non-contact one to calculate phase 
angle between the current and voltage waveform. This 
allows for the calculation of real power as opposed to 
apparent power. In addition, our technique is also 
independent of sensor placement, which greatly reduces the 
installation effort required from end users.  Most 
importantly, unlike the previous approach [12], our system 
is capable of predicting real-time, absolute power 
consumption in a home. 

In-home deployments show an average accuracy of 95.0% 
across seven different places running naturalistic 
appliances. This result is encouraging and can be applied to 
a variety of scenarios such as energy disaggregation 
[2,8,13] and eco-feedback research [6]. This is especially 
true given the low installation burden, that is, the 
researchers are not even required to open their breaker 
panel. The current state of the art requires the users to buy 
and install CTs inside the breaker panel. Some of those 
systems1 do not measure line voltage and therefore can be 
less accurate. Also the error of most CTs is 5-10% as 
defined by IEEE2. Moreover, their rated error is at a low 
current level. At higher current (e.g., >2A, which is usually 
expected in a whole-home scenario), the errors are much 
higher.  

To assess the energy viability of using the self-calibration 
approach, we also calculated the energy dissipated by the 
calibrator across all of our deployments. On average the 
energy use per home is just 0.181 kWh for the calibration to 
converge on the full transfer function. In our current 
prototype, we calibrate the system each time the 
consumption falls into an un-calibrated region. In future, we 
can easily envision a future deployment that uses a 
threshold and calibrate only when the consumption falls 
outside the threshold region. This will reduce both the 
number of calibration cycle as well as the energy 
dissipation. Furthermore, our calibrator was designed to 
pull up to a 300 W load; however, we found through post 
processing that it may be possible only go up to 50 W thus 
reducing the power needs during calibration. 

For this prototype, we used four off-the-shelf magnetic 
pickup sensors. These pickup sensors are essentially 
inductors for all practical purposes. With the recent advent 
of ubiquitous circuit printing techniques [10], we  envision 
printing an array of inductors on a flexible substrate as 
magnetic pickup sensors and sticking them on a breaker 
panel just like a sticker. Finally, to show the result of our 
technique to end-user, a display unit is needed to be install 
in some outlet of the home. We can foresee packaging the 
calibrator within this display unit, thus eliminating the need 
for an external calibrator unit. 
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1 http://www.smarthome.com/75505/Aeon-Labs-DSB09104-ZWUS-Z-
Wave-Home-Energy-Monitor/p.aspx 
2 http://w3.usa.siemens.com/us/internet-
dms/btlv/PowerDistributionComm/PowerDistribution/docs_MV/TechTopi
cs/ANSI_MV_TechTopics91_EN.pdf 
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