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ABSTRACT
We present an empirical study of the long-term prac-
ticality of using human motion to generate operating
power for body-mounted consumer electronics and heal-
th sensors. We have collected a large continuous accel-
eration dataset from eight experimental subjects going
about their normal daily routine for 3 days each. Each
subject is instrumented with a data collection appara-
tus that simultaneously logs 3-axis, 80Hz acceleration
data from six body locations. We use this dataset to
optimize a first-principles physical model of the com-
monly used velocity damped resonant generator (VDRG)
by selecting physical parameters such as resonant fre-
quency and damping coefficient to maximize harvested
power. Our results show that with reasonable assump-
tions on size, mass, placement, and efficiency of VDRG
harvesters, most body-mounted wireless sensors and even
some consumer electronics devices, may be powered con-
tinuously and indefinitely from everyday motion.
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Human Factors, Experimentation

Author Keywords
Inertial power harvesting, human-powered devices

INTRODUCTION
Power remains a key to unlocking the potential for a sus-
tainable ubicomp reality, particularly for body-worn mo-
bile electronics. Paradiso and Starner show the promise
of scavenging energy to power mobile electronics [20, 22,
28, 29]. While power harvesting from natural and re-
newable sources has been a longstanding research area,
there is surprisingly little in the published literature that
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demonstrates the long-term, practical capabilities of gar-
nering energy from daily human activity. Human activity
levels range greatly over the course of a typical day, in-
cluding periods of sleep, quiet intervals for reading or of-
fice work, and highly active periods of walking, running,
or participating in sports activities. Most prior research
into power harvester performance using human subjects
has been performed for short time intervals in laboratory
simulations of selected human activities. In this work we
report the first all-day, continuous all-activity study of
inertial power harvester performance using eight unteth-
ered human subjects going about their ordinary lives.

We have created an untethered, wearable apparatus for
gathering calibrated 3-axis acceleration data continuously
at 80Hz sampling rate, from 6 different body locations.
We collected datasets spanning 24 hours continuous col-
lection periods, and obtained three days of ordinary hu-
man activity from eight experimental participants. This
unique, high-fidelity dataset provides the input for our
power generation experiments. We next developed a first-
principles numerical model using MATLAB Simulink of
the most common type of inertial power harvester, the
Velocity Damped Resonant Generator (VDRG), that pro-
vides an accurate and realistic estimate of achievable per-
formance from an inertial energy harvester based on the
VDRG architecture. For common wireless health sen-
sors and several commonly used consumer electronics de-
vices (such as GPS receivers, cell phones, and MP3 de-
coders), we used reasonable assumptions on form factor,
placement and efficiency of realizable harvesters to cre-
ate models of appropriate VDRGs that could be built
into each device. By feeding each subject’s acceleration
dataset into our VDRG models, we estimate available
power to indicate which electronic devices or wireless sen-
sors can be powered continuously and indefinitely from
energy harvested over the course of a typical day’s activ-
ity. We explore 6 different locations for placement of the
harvester-powered device, considering devices appropri-
ate for each location on the body.

Our results are particularly exciting because they are
based on measured sensor data gathered with high fi-
delity from everyday activities. The proposed inertial
harvester designs—given in terms of the critical features
of form factor, proof mass, resonant frequency and damp-
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ing coefficient—are currently optimized on a per indi-
vidual basis and do not yet generalize across the en-
tire subject pool. However, we discuss the remaining
challenges for establishing general design parameters for
body-mounted motion-powered generators. We can now
conclude with confidence that continuously-operating m-
otion-powered wireless health sensors are entirely within
the realm of practical feasibility and that activity-specific
inertial power harvesting will provide continuous operat-
ing power for some commonly-used consumer electron-
ics devices. We expect that with the refinement of a
new class of inertial power harvesters, called adaptively
tuned velocity damped resonant generators (AT-VDRGs)
we can move beyond activity-specific power harvesters
to devices that will extract energy nearly optimally over
most human activities.

RELATED WORK
The focus of considerable study, energy harvesting has a
long history. More recently, Paradiso and Starner pre-
sented an extensive survey of the various available en-
ergy sources to power mobile devices [20, 22, 29], includ-
ing solar power [17], background radio signals [33], ther-
mal gradients [30], vibrational excitation [11], and hu-
mans. Paradiso’s team at MIT has demonstrated some
clever means of exploiting human motion, such as a self-
powered, spring-loaded igniter switch capable of wire-
lessly transmitting a static ID number [21] and a shoe-
mounted piezoelectric that produces enough energy to
power a wireless transmitter [27].

As these examples suggest, and summarized by Starner
[28], the human body is a tremendous energy reservoir.
Our interest is in the use of human motion to generate
energy. The first use of human-induced vibration as a
practical energy source was the self-winding pedometer
watch created in the 1600s [14]. Self-winding watches
exploited human motion to wind the mechanism, yield-
ing enough power to operate the watch. Since that time,
several commercial products using human-induced vibra-
tion have been invented [22]. Examples include a shak-
able flashlight, which employs electro-magnetic induction
of a magnet moving through electrical coils to power
lights, and hand cranks, which have also been integrated
into small flashlights and radios to produce temporary
power. Similarly, machine-induced vibration can also be
exploited to harvest electrical power [5, 6]. Harvesters
are resonantly tuned to a particular frequency gener-
ated from motors or vehicles, yielding electrical power
ranging from 1 mW to 45 mW, depending upon the ac-
celeration magnitude, easily powering industrial wireless
sensors without batteries. This capability of frequency-
tuned harvesting provided the motivation for this re-
search into the feasibility of a macro-size power harvester
using human-induced vibration.

Unobtrusively scavenging energy from daily human activ-
ity is a very attractive idea in human-powered wearable
computing. However, few studies have examined closely
how human-induced vibration can be used for scaveng-
ing energy and how much power can practically be scav-
enged from vibrational energy in daily ordinary human
motion. Amirtharajah et al. modeled human walking

as a stochastic signal with a narrowband power spectral
density centered on 2 Hz. Their model estimated that
400 µW of power can be generated using human walking
as a vibrational source [11]. Mitcheson et al. presented
optimized architectures for vibration-driven micropower
generators with a sinusoidal driving motion [19]. How-
ever, human motion is a complex combination of sinu-
soidal components, which are difficult to harvest simul-
taneously. Büren et al. measured acceleration from nine
locations on the bodies of walking human subjects and
estimated the maximum output power using simulation
models of inertial microgenerators [13]. The result of
simulations showed that the maximum power density is
around 2.1 mW/cm3. However, these simulations were
performed with acceleration signals measured from stan-
dard walking motion for 60 seconds on a treadmill run-
ning at a constant 4 km/h, and there is a question of
how this result would extrapolate to normal daily activ-
ity, which is what we want to explore. Moreover, that
work did not account for the expected power efficiency
(useful electrical power/simulated output power) of the
harvester model.

Rome et al. exploited a vertical excursion of the 20-38
Kg load in a rigid backpack during normal walking and
climbing on an inclined treadmill [24]. They showed that
users were able to generate up to 7.4 W of power, de-
pending upon the mass of the load. Despite the attrac-
tive power harvested from the backpack, the huge mass
of 38 Kg will limit its use to the niche market such as
adventurers or military personnel. Recently, Kuo’s team
developed a knee brace generator that produced an av-
erage of 5 W of electricity with one device mounted on
each leg [15]. However, the user has to wear a bulky and
heavy (1.8 Kg) orthopedic knee brace around the knee,
so it is difficult for the harvester to be embedded into the
real objects.

For a self-sustaining system, Tröster’s team created a
button-sized solar-powered node composed of sensors, a
processor, RF transmitter, and solar cells, to collect, pro-
cess, and forward sensory data to a central wearable de-
vice in [12]. They showed the possibilities of energy har-
vesting through ordinary exposure to sunlight and indoor
light for an entire day. This style of energy harvesting
through everyday activities echoes our motivation in this
paper.

UNDERSTANDING OF WEARABLE DEVICES
Given the power garnered from humans, we are able to
imagine powering devices such as consumer electronics
and self-sustaining body sensor networks. The tapped
power can be an alternative to batteries for consumer
electronics such as watches, MP3 players, cell phones,
and GPS receiver kits. Another possible application of
human power harvesting is to power wearable sensors for
monitoring human vital signs. Monitoring of the status
of human health could play a key role in the future health
care services for disease prevention as well as the treat-
ment for chronically ill patients. The required power for
all electronics has been tabulated and presented in Table
1. We chose ultra-low power-consuming electronics and
only considered powering core components, e.g., an MP3
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Table 1. Required power for components in consumer
mobile devices and health sensors.

Electronics Reference Required Power
MP3 decoder chip [10] 58 mW
RF receiver chip [2] 24 mW
GPS receiver chip [9] 15 mW
6D motion sensor [25] 14.4 mW

Cell phone (standby) [8] 8.1 mW
PPG sensora [23] 1.473 mW

Humidity [4] 1 mW
Pressure [16] 0.5 mW

3D accelerometer [1] 0.324 mW
Temperature [3] 27 µW
Wristwatch [7] 7 µW

Memory R/Wb [18] 2.17 µW
A-D conversion [26] 1 µW

RF transmissionc [32] sub µW

aPhotoplethysmograph sensor, that measures the blood p-
ressure, the heart rate, and the respiration rate.
bWith 1 Kbit/s, 1 m distance data transmission
cWith 1 Kbit/s, 1 m distance data transmission.

decoder chip, but not an LCD display or a headphone
for an MP3 player. Thus, the main result of this paper
is to demonstrate whether the power garnered from daily
human motion can practically power the low-power com-
ponents for wearable electronics in Table 1 in terms of
real objects and the body locations.

POWER HARVESTER MODEL
In order to use the measured acceleration dataset to es-
timate achievable electrical power output, we have de-
veloped a model for the power harvester in MATLAB
Simulink, a numerical simulation program. We are con-
cerned with the energy available from human body mo-
tion, so we concentrate on inertial generator models where
the body’s acceleration imparts forces on a proof mass
whose motion is coupled to the generator itself. Mitch-
eson classified inertial generators into three main cate-
gories: the Velocity-Damped Resonant Generator (VDR-
G), the Coulomb-Damped Resonant Generator (CDRG),
and the Coulomb-Force Parametric Generator (CFPG),
depending on whether their operating principles are elec-
tromagnetic, electrostatic, or piezoelectric [19]. It has
been shown that when the internal displacement travel
of a generator exceeds 0.5 mm, e.g., for macro-scale (non-
MEMS) generators, the VDRG is the recommended ar-
chitecture [13]. We have therefore concentrated on the
VDRG model for our simulations.

Vibration-driven generators are ideally represented as a
damped mass-spring system, that is, a second-order dif-
ferential equation, as in Equation 1:

mz̈(t) = −Kz(t) − Dż(t) − mÿ(t), (1)

where m is the value of the proof mass, K is the spring
constant, D is the damping coefficient, y(t) is the dis-
placement of the generator, z(t) is the relative displace-
ment between the proof mass and the generator, and t
is time [31]. In this damped mass-spring system, the
electrical energy generated is represented as the energy

Figure 1. A generic model for the velocity-damped reso-
nant generator.

dissipated in the mechanical damper. In an electromag-
netic generator, this damping is due to Lenz’s law as the
moving magnet does mechanical work when traveling in
and out of the generator’s coils.

A general model and operating principle for the VDRG
is shown in Figure 1. Once the generator is accelerated
with displacement y(t), the inertia of the proof mass m
causes it to remain stationary relative to the generator’s
motion with relative displacement z(t). While work is
being done against the damping force in the mechanical
damper, power that dissipates into the damper represents
the generator output power. In particular, the VDRG
is characterized by a damping force proportional to the
relative velocity of the proof mass dz(t)/dt.

We must utilize several important parameters while car-
rying out simulation analysis with measured acceleration
signals and the harvester model: the value of the proof
mass m, spring constant K, damping coefficient D, and
internal travel limit Zmax. Of these variables, the proof
mass m and the internal travel limit Zmax are limited to
an acceptable fraction of the mass and size of the object
into which the generator is incorporated. In our later
analysis we explain our choice of m and Zmax based on
the objects we wish to power.

Previous studies on inertial generators have shown that
the maximum output power of a generator is proportional
to the value of the proof mass independent of the shape
of input acceleration waveform. The spring constant is
chosen so that the generator resonates at some optimal
frequency component f such that a small bandwidth in-
cluding f maximizes the amount of energy recovered from
the complex vibration spectrum. Accordingly, K is cal-
culated from the equation 2πf =

√

K/m in terms of the
selected proof mass m and resonant frequency f . Zmax

represents the maximum travel length of the proof mass
inside the inertial generator. As previously mentioned,
Zmax strongly depends on the size of the physical object
into which the power harvester will be incorporated. A
similar limitation is imposed on estimating the value of
the proof mass.

The damping coefficient D is related to the Q factor,
which refers to the ratio of the frequency at which the
system oscillates to the rate at which the system dissi-
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Figure 2. Figure (a) illustrates our experimental setup of
six three-axis accelerometer modules and two data loggers
mounted on body locations. Each accelerometer module
was carefully chosen to match the probable range of ac-
celeration in the corresponding body location. Figure (b)
shows an accelerometer module mounted on the wrist and
a data logger unit.

pates its energy. Generally, D is chosen to be the lowest
value that keeps the proof mass from reaching the inter-
nal travel limit Zmax of the generator. In our simula-
tion, supposing D to be fixed in practice by the genera-
tor mechanism, we searched for the optimal D that re-
sulted in the maximum generated power over the course
of each day for each subject. Of course a more complex
dynamically-damped generator could be imagined, and
this generator’s control system could be incorporated into
the numerical model to more accurately estimate achiev-
able power for any given generator.

DATA COLLECTION AND ANALYSIS

Experimental Setup
To acquire acceleration signals from six body locations
of human subjects for an entire day, we have developed
wearable data collection units comprising data loggers,
accelerometer modules, and a lithium-ion camcorder bat-
tery (0.1 Kg). Each data collection unit consists of two
Logomatic Serial SD data loggers (65 mm × 110 mm)
from SparkFun Electronics, whose analog inputs are con-
nected to six tri-axial accelerometer modules based on
the ADXL330 (±3g) and ADXL210 (±10g) accelerom-
eters from Analog Devices, and the MMA7260Q (±6g)
accelerometer from Freescale Semiconductor. Each ac-
celerometer module is packaged in a small container cust-
om-fabricated with a 3D printer and filled with hot glue
to protect the sensor from dust or sweat. Thin, flexible
wires interconnect each accelerometer module with the
data logger. The data loggers are contained in a small
waist-pack intended to hold a digital camera. The Lo-
gomatic SD data loggers are configured to record each
analog input as a time series file on a 1GB SD memory
card, with a sampling rate of 80 Hz. This configuration
permits over 24 hours of continuous operation without
the need to recharge the battery or exchange SD cards.

Our experiments consisted of capturing acceleration da-
tasets from eight participants (four men and four women)
wearing the data collection unit for three days (two week-
days and one weekend day). During this time, accel-

Figure 3. An example (the arm) of a filtered acceleration
waveform over a 24 hours period.

eration was continuously recorded from six body loca-
tions where power harvesters could plausibly be mounted:
around the neck, the arm, the wrist, the waist, the knee,
and the ankle (see Figure 2-a). The neck accelerometer
was worn around the neck on a lanyard, like a pendant,
and the waist accelerometer was attached on the data
logger to function like a cell phone holster on the waist
belt. All the other accelerometers were fastened to the
body using an elastic band with Velcro ends, as shown in
Figure 2-b, except the knee sensor, which was fixed to the
skin by a medical bandage because the elastic band on
the knee often slid down while the participant was walk-
ing. The participants had the option to take off the data
collection unit for certain parts of the day if they needed
to (e.g., sleeping or taking a shower). For analysis on the
variation of generated power during different activities,
all the subjects were asked to record their activities and
time on diary sheets.

Processing of Acceleration Signals
The acceleration time series we obtain from the body-
mounted accelerometers corresponds to the acceleration
experienced by the microscopic proof masses inside each
accelerometer unit. Since we use 3-axis accelerometers,
we record each orthogonal component of this acceleration
separately, in X , Y , and Z. These axis labels are local
to the accelerometer’s reference frame because each ac-
celerometer is attached to a different body part, and peo-
ple move around constantly during the day. Fortunately,
the reference frame of the accelerometer proof mass is the
same as that of a proof mass inside a VDRG mounted at
the same location. To obtain the displacements experi-
enced by the accelerometers, for each axis a time series of
differences in displacement of each accelerometer is first
obtained by double-integrating the acceleration dataset.
This displacement time series is then used to calculate
the relative motion of the proof mass inside the VDRG
by feeding the differences in displacement into the power
harvester model.

It is important to note that we measured acceleration
data with the assumption that we would harvest energy
from daily human activities using free motion; that is,
our VDRG does not experience forces beyond those due
to its relative displacement and the inertia of its proof
mass. For example, the accelerometers do not measure,
and a VDRG would not harvest energy from, torque gen-
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Figure 4. The spectra of the acceleration signals from six locations.

erated while maneuvering a steering wheel to drive a car
or pedaling a bicycle. Similarly, the ground reaction force
on the feet while one is walking or running is not consid-
ered. This force-driven (or torque-driven) energy could
be investigated with another type of sensor and power
harvester [15, 27]. Because they add resistance to the
body’s motion beyond their own weight, these force- or
torque-driven harvesters are not inertial in nature. In
this work we consider only kinetic energy generated from
human motion as an absolute magnitude of acceleration,
assuming the mass of each part of the torso and the limb
are held constant for each subject. In the case of the neck
and waist accelerometers, although the movement of each
sensor is not exactly the motion of the subjects, they do
behave like real objects people wear (e.g., pendants or
pouches).

Even though the data sheets for the accelerometers that
we used provide typical zero-gravity output voltage and
sensitivity (volt/gravity), manual calibrations were per-
formed for all accelerometers to obtain more accurate
translation from the voltage output of each accelerome-
ter to its acceleration value. To accomplish this calibra-
tion, the 0g voltage and sensitivity for every axis of each
accelerometer were recorded by positioning each sensi-
tive axis (X , Y , Z) of the accelerometer at +g and −g.
Because accelerometers measure the static acceleration
of gravity (1g) as well as the dynamic acceleration gener-
ated by pure human motion, gravity is always included in
the measured acceleration data as a DC component. To
eliminate the background signal (DC component) due to
gravity, we high-pass filtered the measured acceleration
signals with a 0.05 Hz cutoff frequency. Figure 3 shows
an example of the filtered acceleration waveform.

Data Analysis in Frequency Domain

To gain more insight about the measured acceleration
data, we generated frequency domain spectra by per-
forming a FFT (Fast Fourier Transform) on the accel-
eration signal after removing the background signal due
to gravity. Figure 4 displays the spectra of the accelera-
tion signals from six locations on the body of one subject
during one day. Since each plot is made with the same
scale, we immediately observe that the lower body (waist,
knee, and ankle) experiences much more pronounced ac-
celeration than the upper body (neck, arm, and wrist).
This suggests that the lower body is likely to yield more
electrical energy converted from kinetic energy than the
upper body. However, the upper body spectra (especially
the wrist) contain energy at lower frequencies (below 0.5
Hz) when compared to the lower body, probably because
the upper body has a higher degree of freedom when
moving than the lower body (e.g., talking while gestur-
ing while sitting on a chair).

Although ordinary human motion is not a pure sinusoidal
driving signal, i.e., cos(2πft), several large peaks appear
in each spectrum. Accordingly, ordinary human motion
can be approximated as a combination of several domi-
nant frequency components. This observation leads us to
the potential of designing an optimal inertial power har-
vester that can be accurately tuned to a selected domi-
nant frequency range for a given set of ordinary human
activities. We observe that the largest peak in each spec-
trum occurs at approximately 1 or 2 Hz, which is as ex-
pected when we consider that the normal human walking
pace is approximately two foot-falls per second.

To algorithmically determine the dominant frequency of
each subject’s activities throughout the day, we searched
for the top 20 frequency components, ranked in order
of observed energy from highest to lowest, from each
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Figure 5. A flow chart of the signal processing pipeline for the power estimation procedure.

spectrum. In Figure 4, red circles depict the top 20
frequency components between 0.5 Hz and 40 Hz. We
neglect frequency components below 0.5 Hz due to the
impracticality of manufacturing VDRGs with acceptable
efficiency at such low frequencies. Although the top 20
frequency components may be considered dominant fre-
quencies, perfectly sharp peaks are not observed because
ordinary human motion is not sinusoidal. Accordingly,
instead of treating the observed accelerations as pure
tones, we need to investigate which frequency bins con-
tain considerable kinetic energy to set the resonant fre-
quency of the VDRG. Consequently, from the top 20 fre-
quency components, we again sorted to obtain the 20 fre-
quency bins by aggregating the adjacent frequency bins
and ranking the sums. The top 20 frequency bin values
are then used to tune the VDRG model to obtain an op-
timal inertial generator that yields the maximum output
power with a measured acceleration signal. This opti-
mization is performed by adjusting spring constant K to
satisfy the equation 2πf =

√

K/m, where m is the value
of the proof mass of the inertial generator and f is the
resonant frequency.

SIMULATION AND RESULT

Simulation Setup
To estimate the electrical power that could be generated
by VDRGs incorporated into everyday electronic devices,
we chose a wristwatch, a cell phone, and a shoe as rep-
resentatives of typical mobile devices. A wristwatch is
a good example of a device for which power harvesting
technology has already been developed. Cell phones are
common mobile devices we use every day, and their size
and mass are similar to those of an MP3 player such as
an iPod. Although a shoe is not per se a device that
consumes electrical power, it does represent an object
into which power harvesting technology can be embed-
ded. A number of inventors have developed prototype
shoe-mounted devices and described how they may be
powered by energy harvesting, though most of those har-
vesters are of the non-inertial type that rely on inserting
the harvester between the foot and the ground.

Based on an informal empirical survey of digital devices,
and some general assumptions, we have developed what
we believe are reasonable values of the proof mass m and
internal travel length Zmax for a harvester incorporated
into each object: 2 g / 4.2 cm, 36 g / 10 cm, and 100
g / 20 cm for a wristwatch, a cell phone, and a shoe,
respectively. The proof mass of 2 g for the wristwatch
was derived from the mass of a commercialized product
[22] and the interval travel length for a wristwatch was
obtained from the average value of the diameters of 41
SWATCH wristwatches; the proof mass of the cell phone
was derived from one-third of the average mass of 40
NOKIA cell phones; and the proof mass of the shoe was
obtained from an assumption that shoe length and mass
for the normal adult would be greater than 20 cm and
300 g, respectively.

Based on the chosen objects and the body locations, we
measured accelerations and selected the power harvester
configuration for simulation, displayed in Table 2. We
could not imagine any useful digital object mountable on
the knee, so we excluded this case from the simulation.
We considered all other configurations as plausible con-
ditions in daily life. The wristwatch cases represented
either a pendant worn around the neck or a watch worn
on a wrist; the cell phone cases represented a phone sus-
pended on a necklace around the neck, inside an arm
band, or in a waist holster; and the shoe-size object rep-
resented a device that could be worn on the ankle since
such devices would not typically be placed on other parts
of the body.

Power Estimation Procedure
We have developed the following procedure for using the
measured acceleration dataset, in combination with the
VDRG model, to estimate available power as illustrated
in Figure 5. First, an acceleration data set for an entire
day is divided into 8640 (= 24hr∗60min/hr∗60sec/min∗
1/10sec) ten-second interval fragments. Each fragment
is fed into the generator model so that the displacement
of the generator frame (i.e., the accelerometer container)
y(t) can be obtained by double integrating the accelera-
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Table 2. Power harvester configuration used for simula-
tion.

Wristwatch Cell Phone Shoe
Neck ◦ ◦
Arm ◦
Wrist ◦
Waist ◦
Knee
Ankle ◦

tion signal. Subsequently, the relative displacement z(t)
and derivative dz(t)/dt of the proof mass can be calcu-
lated from y(t). As mentioned in the previous section,
the electrical power generated in the inertial generators
can be represented by the power dissipated in the me-
chanical damper shown in Figure 1. Accordingly, the
energy dissipated in the damper, Ed is:

Ed =

∫ Z2

Z1

F · dz, (2)

where F = Dż is the damping force, and Z1 and Z2

are the start and end positions, respectively, for the line
integral. Equation 2 can be expanded as follows:

Ed =

∫ Z2

Z1

Dż · dz =

∫ T

t=0

D
dz

dt
·
dz

dt
dt = D

∫ T

t=0

(ż)2dt.

(3)
The average power during time interval T = 10sec is

Paverage =
1

T
Ed =

D

T

∫ T

t=0

(ż)2dt. (4)

By applying this procedure to all fragments successively,
the average power value for every ten-second fragment is
obtained. The power calculation procedure has been im-
plemented together with the VDRG model in MATLAB
Simulink.

Because the accelerometer modules we deployed in our
experiments recorded the accelerations along X , Y , and
Z axes, we assumed that a practical VDRG unit would
be built with a single axis in alignment with one of the
axes of the accelerometers. The preferred orientation of
the VDRG is then chosen based on which one of the three
accelerometer axes yields the maximum output power.

Optimization and Result
Given m and Zmax as derived for each of the selected
objects, and K chosen based on the FFT analysis for
each configuration in Table 2, we optimized the power
harvesters by searching for the optimal damping coeffi-
cient D, which maximizes average output power P . P
then represents the energy generated while the subjects
wore the data collection unit over the entire measurement
time. First, we searched for three different D values in
terms of three K calculated from FFT analysis for three
days for each of the eight subjects. Subsequently, we
found one optimal Do for three days for each subject us-
ing one dominant frequency fo or spring constant Ko,
which can be obtained by concatenating all acceleration
data for three days and performing the same method de-
scribed in the FFT analysis section.

Table 3. Generated output power: C1-a watch hanging on
the neck, C2-a watch on the wrist, C3-a phone hanging
on the neck , C4-a phone on the arm, C5-a phone on the
waist, and C6-a shoe on ankle

Sub C1 C2 C3 C4 C5 C6
(µW) (µW) (mW) (mW) (mW) (mW)

14 164 0.2 1.1 0.1 2.8
1 31 265 0.6 1.8 0.1 4.2

25 195 0.7 1.7 1.4 12.6
48 167 0.3 1.4 0.1 2.8

2 35 162 0.4 1.4 0.2 2.9
10 67 0.1 0.7 0.2 2.6
16 127 0.4 1.2 0.5 6.0

3 26 137 0.2 1.3 0.2 2.3
16 153 0.2 1.3 0.4 3.4
8 57 0.3 0.5 0.3 2.6

4 13 66 0.4 0.7 0.3 3.1
12 84 0.5 0.7 0.4 4.0
20 141 0.7 0.6 0.6 10.5

5 19 143 0.7 0.6 0.6 11.5
36 170 1.2 1.1 1.4 12.0
37 130 0.7 0.6 0.1 1.0

6 37 143 0.7 0.7 0.2 10.4
73 225 1.4 1.3 0.6 3.1
10 54 0.1 0.3 0.1 3.1

7 18 96 0.7 0.5 0.7 4.1
30 322 0.3 0.9 0.3 0.7
32 144 0.2 0.7 0.5 3.7

8 29 176 0.2 1.2 0.3 1.8
99 346 1.7 2.1 0.8 6.5

With the harvesters optimized for the given configura-
tion for each of our subjects, we are able to estimate
the electrical power for a given form factor. However,
even though the harvesters have been theoretically op-
timized, other practical questions may need to be ad-
dressed. First, we must estimate the expected mechanical-
to-electrical conversion efficiency of the harvester, in terms
of useful electrical power obtained as a fraction of the
amount of power dissipated in the damper. Although the
dissipated power represents the generated power of the
harvester in Figure 1, the two values might differ due to
the mechanical aspects of implementation and electrical
circuitry efficiency. Therefore, by applying the charac-
teristics of the PMG 27 [5] harvester to our simulation
method and then comparing the result to the data sheet,
we estimated that typical mechanical to electrical con-
version efficiency would be around 20%. Consequently,
we assumed that only 20% of the energy dissipated in
the harvester’s damper would be provided to the elec-
tronics it was powering. Second, we assumed that all
energy generated over the day could be stored in some
form of storage and would be used to power wearable
electronics. Our last assumption is that the direction of
the power harvester in real objects could be continuously
aligned with the axis that generates the maximum out-
put for a whole day. Based on these assumptions and
the simulation results, the average electrical power ex-
pected from a VDRG embedded in each object was 155
± 106 µW, 1.01 ± 0.46 mW, and 4.9 ± 3.63 mW for the
wristwatch, the cell phone, and the shoe, respectively,
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Figure 6. The ratio of the electrical output power of the harvester to the required power for wearable electronics: a
watch hanging on the neck, a watch on the wrist, a phone hanging on the neck, a phone on the waist, a phone on the
arm, and a shoe on the ankle. The X-index represents the subjects (8 subjects * 3 days = 24 days), and the Y-index
represents the wearable electronics considered in Table 1.
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depending upon the body location on which the power
harvester was mounted. Table 3 illustrates the generated
power for our eight subjects.

DISCUSSION
From the results just presented, we can determine whether
the wearable electronics in Table 1 can be powered for a
given subject on a given day, depending upon the simu-
lation conditions shown in Table 2. Figure 6 shows the
result of using the garnered output power to power dif-
ferent wearable electronics at various parts on the body.
In a number of cases, the output power is insufficient
to continuously power the highest demanding electron-
ics such as the MP3 decoder chip, the RF receiver chip,
and the GPS receiver chip. However, the VDRG can
be used to charge a battery for intermittent operation of
those devices. One can imagine using the garnered power
to charge a back-up battery when a standard recharging
power source is not available. Low-power electronics such
as the medical telemetry devices and wristwatches can be
powered continuously. If we consider a simplified model
of a signal processing pipeline for a sensor-enabled sys-
tem consisting of a collection of sensors, an analog to
digital converter, micro-controller, and short-range wire-
less transmission, our results indicate that we are able
to continuously power these types of integrated systems.
As new low-power technologies emerge, we can imagine
many more senors being able to be supported by this har-
vesting approach. Thus, we begin to see the feasibility
of developing wearable electronics powered from normal
everyday activities.

Although the diary sheets that the participants recorded
while collecting data do not perfectly express all their
activities, it is still valuable to look into the generated
power in terms of some of the activities. Figure 7 shows
the power generated over 24 hours for subject 1 with the
activities annotated. In this figure, the available power at
the upper arm shows that a phone-scale harvester on the
arm will generate about 15 mW while running. Thus, our
specific ultra-low power GPS chip can be powered, even
though much more power might be necessary to operate
extra components such as an LCD display. Likewise, a
shoe harvester located at the ankle will produce 20 mW—
enough to power the selected GPS chip, but still insuf-
ficient for an entire GPS unit. The figure for power on
the wrist shows the continuous availability of more than
60 µW power over nearly all measurements, because of
the large number of ambulatory activities taking place
over the course of the day. Similarly, arm power shows
very high power generation during activities in which the
arms are moved vigorously.

LIMITATIONS AND FUTURE WORK
Although our results show that some electronics can-
not be continuously powered by the type of unobtrusive
VDRG-based harvester that we have studied, the appar-
ent power shortage could be mitigated in several ways.
First, because the output power of the harvester is pro-
portional to the value of the proof mass regardless of the
acceleration waveform and the architecture of the har-
vester, we can increase the output power with a heavier
proof mass in the harvester. But overwork and fatigue,

Figure 7. Power generated with a watch on the wrist, a
phone on the arm, and a shoe on the ankle Friday through
Saturday afternoon for the subject 1. (a) watch on wrist,
(b) phone on arm, (c) shoe on ankle, (d) activity annota-
tion.

resulting from too much weight, would have to be care-
fully considered while increasing the proof mass. Second,
we may use two other axes as well as the axis that gen-
erates the maximum energy in designing the power har-
vester, i.e., a harvester with three mass-spring systems
aligned with the X , Y , and Z axes. Thus, powering a
GPS receiver is probably realizable, assuming that an
individual is hiking on a mountain wearing mountain-
climbing boots into which a heavier proof mass or three
mass-spring systems are embedded.

Although we have optimized the harvester for a given
subject and location, a harvester with a single K/D com-
bination could be designed for a given location that would
work well enough for all of our subjects. The method
would be analogous to that used in optimizing the har-
vester for a given individual. We can first concatenate
the data of all the days into a single time series, which
may form a huge data set; then we can perform FFT
analysis; and finally we might be able to obtain a single
dominant frequency for a given location. After optimiz-
ing D with the single K value, a harvester for all subjects
can be designed for given locations although some vari-
ation would obviously appear in the performance of the
harvester across subjects.
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We expect that a typical VDRG harvester will be imple-
mented with a permanent magnet (serving as the proof
mass) moving through a stationary coil. Due to Lenz’s
law, the damping force of the harvester can be adjusted
by changing the effective load resistance presented to
the generator coil. This variable-load-impedance method
permits dynamic control of the damping constant D. It
could be implemented with either an analog or a digital
control system, though probably a digital control system
using a pulse width modulation technique to dump en-
ergy into a storage capacitor or battery for a certain por-
tion of the proof mass travel would be the most straight-
forward implementation. Similarly, if spring constant K
of the spring suspending the proof mass in a harvester
is adjustable mechanically or electrically, a dynamically
tunable harvester that could adapt K and D can be real-
ized to maximize the output power in terms of the indi-
vidual, the activity, and the form factor. We expect this
avenue of adaptive tuning of the VDRG to represent a
significant and intriguing area for future work.

CONCLUSIONS
We have presented the first 24-hour in situ, continuous
study of inertial power harvester performance from ev-
eryday activities. We discussed the design of a specific
type of inertial harvester, know as a velocity damped
resonant generator (VDRG). Based on acceleration data
collected from six body locations from each of our eight
different participants, we analyzed the amount of energy
that can be garnered at those locations. Our findings
show that is it feasible to continuously operate motion-
powered wireless health sensors and that activity-specific
inertial power harvesting will provide continuous operat-
ing power for some commonly-used consumer electronics
devices, such as a GPS receiver. We also found that
motion-generated power can also provide an intermittent
power source for more power intensive devices like a MP3
player or cell phone. With the advent of new low-power
integrated circuits and sensors, or the development of
adaptively tuned VDRG, we can imagine supporting a
larger number of devices in the near future.
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and G. Tröster. Optimization of inertial micropower generators
for human walking motion. IEEE J. Sensors, 6(1):28–38, 2006.

14. A. Chapuis and E. Jaquet. The History of the Self-Winding
Watch. Roto-Sadag, 1956.

15. J. Donelan, Q. Li, V. Naing, J. Hoffer, D. Weber, and
A. Kuo. Biomechanical energy harvesting: Generating
electricity during walking with minimal user effort. Science,
319(5864):807 – 810, 2008.

16. C. Hierolda. Low power integrated pressure sensor system for
medical applications. Sensors and Actuators A: Physical,
73(1-2):1261–1265, 1999.

17. W. Huynh, J. Dittmer, and A. Alivisatos. Hybrid Nanorod-
Polymer solar cells. Science, 295(5564):2425–2427, 2002.

18. G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy.
Ultra-low power data storage for sensor networks. In IPSN06,
pages 374–381, 2006.

19. P. Mitcheson, T. Green, E. Yeatman, and A. Holmes.
Architectures for vibration-driven micropower generators.
IEEE J. MEMS, 13(3):429–440, 2004.

20. J. Paradiso. Systems for human-powered mobile computing.
In DAC06, pages 645–650, 2006.

21. J. Paradiso and M. Feldmeier. A compact, wireless,
self-powered pushbutton controller. In Ubicomp01, pages
299–304, 2001.

22. J. Paradiso and T. Starner. Energy scavenging for mobile and
wireless electronics. IEEE Pervasive Comp., 4(1):18–27, 2005.

23. S. Rhee, B.-H. Yang, and H. Asada. Artifact-resistant,
power-efficient design of finger-ring plethysmographic sensors
part i:Design and analysis. In EMBS00, pages 2792–2795,
2000.

24. L. Rome, L. Flynn, E. Goldman, and T. Yoo. Generating
electricity while walking with loads. Science,
309(5741):1725–1728, 2005.

25. A. Sadat, H. Qu, C. Yu, J. S. Yuan, and H. Xie. Low-power
CMOS wireless MEMS motion sensor for physiological activity
monitoring. IEEE Trans. Circuits Syst, 52(12):2539–2551,
2005.

26. J. Sauerbrey, S. Landsiedel, and R. Thewes. A 0.5-v 1-µw
successive approximation ADC. IEEE J. Solid-State Circuits,
38(7):1261–1265, 2003.

27. N. Shenck and J. Paradiso. Energy scavenging with
shoe-mounted piezoelectrics. IEEE Micro, 21(3):30–42, 2001.

28. T. Starner. Human-powered wearable computing. IBM
Systems Journal, 35(3&4):618–629, 1996.

29. T. Starner and J. Paradiso. Human-generated power for
mobile electronics. Low-Power Electronics Design, CRC Press,
chapter 45, pages 1-35, 2004.

30. M. Strasser. Miniaturized thermoelectric generators based on
poly-Si and poly-SiGe surface micromachining. Sensors and
Actuators A: Physical, 97-98:535–542, 2002.

31. C. Williams and R. Yates. Analysis of a micro-electric
generator for microsystems. Sensors and Actuators A:
Physical, 52:8–11, 1996.

32. D. Yates and A. Holmes. Micro power radio module.
ORESTEIA IST project, 2003.

33. E. Yeatman. Advances in power sources for wireless sensor
nodes. In BSN06, pages 20–21, 2004.

83




